@inproceedings{728948ce418a440fa8eb9865bec371eb,
title = "Toward Human-in-the-Loop Collaboration between Software Engineers and Machine Learning Algorithms",
abstract = "Several papers have recently contained reports on applying machine learning (ML) to the automation of software engineering (SE) tasks, such as project management, modeling and development. However, there appear to be no approaches comparing how software engineers fare against machine-learning algorithms as applied to specific software development tasks. Such a comparison is essential to gain insight into which tasks are better performed by humans and which by machine learning and how cooperative work or human-in-the-loop processes can be implemented more effectively. In this paper, we present an empirical study that compares how software engineers and machine-learning algorithms perform and reuse tasks. The empirical study involves the synthesis of the control structure of an autonomous streetlight application.",
author = "Nathalia Nascimento and Paulo Alencar and Carlos Lucena and Donald Cowan",
note = "Publisher Copyright: {\textcopyright} 2018 IEEE.; 2018 IEEE International Conference on Big Data, Big Data 2018 ; Conference date: 10-12-2018 Through 13-12-2018",
year = "2018",
month = jul,
day = "2",
doi = "10.1109/BigData.2018.8622107",
language = "English (US)",
series = "Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
pages = "3534--3540",
editor = "Naoki Abe and Huan Liu and Calton Pu and Xiaohua Hu and Nesreen Ahmed and Mu Qiao and Yang Song and Donald Kossmann and Bing Liu and Kisung Lee and Jiliang Tang and Jingrui He and Jeffrey Saltz",
booktitle = "Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018",
address = "United States",
}