Toward metamodels for composable and reusable additive manufacturing process models

Paul Witherell, Shaw C. Feng, Rich Martukanitz, Timothy W. Simpson, David B.Saint John, Pan Michaleris, Zi Kui Liu, Long Qing Chen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Though the advanced manufacturing capabilities offered by additive manufacturing (AM) have been known for several decades, industry adoption of AM technologies has been relatively slow. Recent advances in modeling and simulation of AM processes and materials are providing new insights to help overcome some of the barriers that have hindered adoption. However, these models and simulations are often application specific, and few are developed in an easily reusable manner. Variations are compounded because many models are developed as independent or proprietary efforts, and input and output definitions have not been standardized. To further realize the potential benefits of modeling and simulation advancements, including predictive modeling and closed-loop control, more coordinated efforts must be undertaken. In this paper, we advocate a more harmonized approach to model development, through classification and metamodeling that will support model composability, reusability, and integration. We review several types of AM models and use direct metal powder bed fusion characteristics to provide illustrative examples of the proposed classification and metamodel approach. We describe how a coordinated approach can be used to extend modeling capabilities by promoting model composability. As part of future work, a framework is envisioned to realize a more coherent strategy for model development and deployment.

Original languageEnglish (US)
Title of host publication34th Computers and Information in Engineering Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846285
DOIs
StatePublished - 2014
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: Aug 17 2014Aug 20 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume1A

Other

OtherASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Country/TerritoryUnited States
CityBuffalo
Period8/17/148/20/14

All Science Journal Classification (ASJC) codes

  • Modeling and Simulation
  • Mechanical Engineering
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Toward metamodels for composable and reusable additive manufacturing process models'. Together they form a unique fingerprint.

Cite this