TY - JOUR
T1 - Toward Rapid Manufacturability Analysis Tools for Engineering Design Education
AU - Lynn, Roby
AU - Saldana, Christopher
AU - Kurfess, Thomas
AU - Reddy, Nithin
AU - Simpson, Timothy
AU - Jablokow, Kathryn
AU - Tucker, Tommy
AU - Tedia, Saish
AU - Williams, Christopher
N1 - Publisher Copyright:
© 2016 The Authors
PY - 2016
Y1 - 2016
N2 - Engineering students are often unaware of manufacturing challenges that are introduced during the design process. Students will sometimes design parts that are either very difficult or impossible to manufacture, because they are unaware of the intricacies and limitations of various manufacturing processes. Design for manufacturability (DFM) education must be improved to address these issues, and this work is a vision for implementation of a rapid method for facilitating DFM education in terms of subtractive and additive manufacturing processes. The goal is to teach students about how their designs impact ease and cost of manufacturing, in addition to giving them knowledge and intuition to fluidly move between both additive and subtractive manufacturing mindsets. This work describes use of a commercial high-performance computing (HPC)-accelerated parallelized trajectory planning software package called SculptPrint, which enables students to visualize the subtractive manufacturability of the parts they design. While SculptPrint is currently limited to subtractive manufacturability analysis, this work also describes the future development of a manufacturability analysis tool for Additive Manufacturing (AM). Analysis is performed on a set of sample parts for both subtractive and additive manufacturing. The results demonstrate the effectiveness of advanced manufacturability tools in manufacturing process selection with consideration of manufacturing time, cost, and complexity. A distributed architecture is also examined that will allow students to perform manufacturability analysis without physical access to HPC hardware.
AB - Engineering students are often unaware of manufacturing challenges that are introduced during the design process. Students will sometimes design parts that are either very difficult or impossible to manufacture, because they are unaware of the intricacies and limitations of various manufacturing processes. Design for manufacturability (DFM) education must be improved to address these issues, and this work is a vision for implementation of a rapid method for facilitating DFM education in terms of subtractive and additive manufacturing processes. The goal is to teach students about how their designs impact ease and cost of manufacturing, in addition to giving them knowledge and intuition to fluidly move between both additive and subtractive manufacturing mindsets. This work describes use of a commercial high-performance computing (HPC)-accelerated parallelized trajectory planning software package called SculptPrint, which enables students to visualize the subtractive manufacturability of the parts they design. While SculptPrint is currently limited to subtractive manufacturability analysis, this work also describes the future development of a manufacturability analysis tool for Additive Manufacturing (AM). Analysis is performed on a set of sample parts for both subtractive and additive manufacturing. The results demonstrate the effectiveness of advanced manufacturability tools in manufacturing process selection with consideration of manufacturing time, cost, and complexity. A distributed architecture is also examined that will allow students to perform manufacturability analysis without physical access to HPC hardware.
UR - http://www.scopus.com/inward/record.url?scp=85014311414&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85014311414&partnerID=8YFLogxK
U2 - 10.1016/j.promfg.2016.08.093
DO - 10.1016/j.promfg.2016.08.093
M3 - Conference article
AN - SCOPUS:85014311414
SN - 2351-9789
VL - 5
SP - 1183
EP - 1196
JO - Procedia Manufacturing
JF - Procedia Manufacturing
T2 - 44th North American Manufacturing Research Conference, NAMRC 2016
Y2 - 27 June 2016 through 1 July 2016
ER -