Abstract
We report a design of high voltage magnesium-lithium (Mg-Li) hybrid batteries through rational control of the electrolyte chemistry, electrode materials and cell architecture. Prototype devices with a structure of Mg-Li/LiFePO4 (LFP) and Mg-Li/LiMn2O4 (LMO) have been investigated. A Mg-Li/LFP cell using a dual-salt electrolyte 0.2 M [Mg2Cl2(DME)4][AlCl4]2 and 1.0 M LiTFSI exhibits voltages higher than 2.5 V (vs. Mg) and a high specific energy density of 246 W h kg-1 under conditions that are amenable for practical applications. The successful demonstrations reported here could be a significant step forward for practical hybrid batteries.
Original language | English (US) |
---|---|
Pages (from-to) | 5379-5382 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 52 |
Issue number | 31 |
DOIs | |
State | Published - Apr 21 2016 |
All Science Journal Classification (ASJC) codes
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Chemistry(all)
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry