Towards 6g iot: Tracing mobile sensor nodes with deep learning clustering in uav networks

Yannis Spyridis, Thomas Lagkas, Panagiotis Sarigiannidis, Vasileios Argyriou, Antonios Sarigiannidis, George Eleftherakis, Jie Zhang

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Unmanned aerial vehicles (UAVs) in the role of flying anchor nodes have been proposed to assist the localisation of terrestrial Internet of Things (IoT) sensors and provide relay services in the context of the upcoming 6G networks. This paper considered the objective of tracing a mobile IoT device of unknown location, using a group of UAVs that were equipped with received signal strength indicator (RSSI) sensors. The UAVs employed measurements of the target’s radio frequency (RF) signal power to approach the target as quickly as possible. A deep learning model performed clustering in the UAV network at regular intervals, based on a graph convolutional network (GCN) architecture, which utilised information about the RSSI and the UAV positions. The number of clusters was determined dynamically at each instant using a heuristic method, and the partitions were determined by optimising an RSSI loss function. The proposed algorithm retained the clusters that approached the RF source more effectively, removing the rest of the UAVs, which returned to the base. Simulation experiments demonstrated the improvement of this method compared to a previous deterministic approach, in terms of the time required to reach the target and the total distance covered by the UAVs.

Original languageEnglish (US)
Article number3936
JournalSensors
Volume21
Issue number11
DOIs
StatePublished - Jun 1 2021

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Towards 6g iot: Tracing mobile sensor nodes with deep learning clustering in uav networks'. Together they form a unique fingerprint.

Cite this