Towards Automatically Reverse Engineering Vehicle Diagnostic Protocols

Le Yu, Yangyang Liu, Pengfei Jing, Xiapu Luo, Lei Xue, Kaifa Zhao, Yajin Zhou, Ting Wang, Guofei Gu, Sen Nie, Shi Wu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Scopus citations

Abstract

In-vehicle protocols are very important to the security assessment and protection of modern vehicles since they are used in communicating with, accessing, and even manipulating ECUs (Electronic Control Units) that control various vehicle components. Unfortunately, the majority of in-vehicle protocols are proprietary without publicly available documents. Although recent studies proposed methods to reverse engineer the CAN protocol used in the communication among ECUs, they cannot be applied to vehicle diagnostics protocols, which have been widely exploited by attackers to launch remote attacks. In this paper, we propose a novel framework for automatically reverse engineering the diagnostic protocols of vehicles by leveraging professional diagnostic tools. Specifically, we design and develop a new cyber-physical system that uses a set of algorithms to control a programmable robotics arm with the aid of cameras to automatically trigger and capture the messages of diagnostics protocols as well as reverse engineer their formats, semantic meanings, and proprietary formulas required for processing the response messages. We perform a large-scale experiment to evaluate our prototype using 18 real vehicles. It successfully reverse engineers 570 messages (446 for reading sensor values and 124 for controlling components). The experimental results show that our framework achieves high precision in reverse engineering proprietary formulas and obtains much more messages than the prior approach based on app analysis.

Original languageEnglish (US)
Title of host publicationProceedings of the 31st USENIX Security Symposium, Security 2022
PublisherUSENIX Association
Pages1939-1956
Number of pages18
ISBN (Electronic)9781939133311
StatePublished - 2022
Event31st USENIX Security Symposium, Security 2022 - Boston, United States
Duration: Aug 10 2022Aug 12 2022

Publication series

NameProceedings of the 31st USENIX Security Symposium, Security 2022

Conference

Conference31st USENIX Security Symposium, Security 2022
Country/TerritoryUnited States
CityBoston
Period8/10/228/12/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Towards Automatically Reverse Engineering Vehicle Diagnostic Protocols'. Together they form a unique fingerprint.

Cite this