Abstract
Coherent structures are solutions to reactiondiffusion systems that are time-periodic in an appropriate moving frame and spatially asymptotic at x=±∞ to spatially periodic travelling waves. This paper is concerned with sources which are coherent structures for which the group velocities in the far field point away from the core. Sources actively select wave numbers and therefore often organize the overall dynamics in a spatially extended system. Determining their nonlinear stability properties is challenging as localized perturbations may lead to a non-localized response even on the linear level due to the outward transport. Using a Burgers-type equation as a model problem that captures some of the essential features of sources, we show how this phenomenon can be analysed and asymptotic nonlinear stability be established in this simpler context.
Original language | English (US) |
---|---|
Pages (from-to) | 382-392 |
Number of pages | 11 |
Journal | Physica D: Nonlinear Phenomena |
Volume | 241 |
Issue number | 4 |
DOIs | |
State | Published - Feb 15 2012 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Mathematical Physics
- Condensed Matter Physics
- Applied Mathematics