Towards privacy preserving social recommendation under personalized privacy settings

Xuying Meng, Suhang Wang, Kai Shu, Jundong Li, Bo Chen, Huan Liu, Yujun Zhang

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


Privacy leakage is an important issue for social relationships-based recommender systems (i.e., social recommendation). Existing privacy preserving social recommendation approaches usually allow the recommender to fully control users’ information. This may be problematic since the recommender itself may be untrusted, leading to serious privacy leakage. Besides, building social relationships requires sharing interests as well as other private information, which may lead to more privacy leakage. Although sometimes users are allowed to hide their sensitive private data using personalized privacy settings, the data being shared can still be abused by the adversaries to infer sensitive private information. Supporting social recommendation with least privacy leakage to untrusted recommender and other users (i.e., friends) is an important yet challenging problem. In this paper, we aim to achieve privacy-preserving social recommendation under personalized privacy settings. We propose PrivSR, a novel privacy-preserving social recommendation framework, in which user can model user feedbacks and social relationships privately. Meanwhile, by allocating different noise magnitudes to personalized sensitive and non-sensitive feedbacks, we can protect users’ privacy against untrusted recommender and friends. Theoretical analysis and experimental evaluation on real-world datasets demonstrate that our framework can protect users’ privacy while being able to retain effectiveness of the underlying recommender system.

Original languageEnglish (US)
Pages (from-to)2853-2881
Number of pages29
JournalWorld Wide Web
Issue number6
StatePublished - Nov 1 2019

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture
  • Computer Networks and Communications


Dive into the research topics of 'Towards privacy preserving social recommendation under personalized privacy settings'. Together they form a unique fingerprint.

Cite this