Tracing the accretion history of supermassive black holes through X-ray variability: Results from the Chandra Deep Field-South

M. Paolillo, I. Papadakis, W. N. Brandt, B. Luo, Y. Q. Xue, P. Tozzi, O. Shemmer, V. Allevato, F. E. Bauer, A. Comastri, R. Gilli, A. M. Koekemoer, T. Liu, C. Vignali, F. Vito, G. Yang, J. X. Wang, X. C. Zheng

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

We study the X-ray variability properties of distant active galactic nuclei (AGNs) in the Chandra Deep Field-South region over 17 yr, up to z ~4, and compare them with those predicted by models based on local samples. We use the results of Monte Carlo simulations to account for the biases introduced by the discontinuous sampling and the low-count regime. We confirm that variability is a ubiquitous property of AGNs, with no clear dependence on the density of the environment. The variability properties of high-z AGNs, over different temporal time-scales, are most consistent with a power spectral density (PSD) described by a broken (or bending) power law, similar to nearby AGNs. We confirm the presence of an anticorrelation between luminosity and variability, resulting from the dependence of variability on black hole (BH) mass and accretion rate. We explore different models, finding that our acceptable solutions predict that BH mass influences the value of the PSD break frequency, while the Eddington ratio λEdd affects the PSD break frequency and, possibly, the PSD amplitude as well. We derive the evolution of the average λEdd as a function of redshift, finding results in agreement with measurements based on different estimators. The large statistical uncertainties make our results consistent with a constant Eddington ratio, although one of our models suggest a possible increase of λEdd with lookback time up to z ~2-3. We conclude that variability is a viable mean to trace the accretion history of supermassive BHs, whose usefulness will increase with future, wide-field/large effective area X-ray missions.

Original languageEnglish (US)
Pages (from-to)4398-4411
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Volume471
Issue number4
DOIs
StatePublished - Nov 2017

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Tracing the accretion history of supermassive black holes through X-ray variability: Results from the Chandra Deep Field-South'. Together they form a unique fingerprint.

Cite this