TY - JOUR
T1 - Tracing the accretion history of supermassive black holes through X-ray variability
T2 - Results from the Chandra Deep Field-South
AU - Paolillo, M.
AU - Papadakis, I.
AU - Brandt, W. N.
AU - Luo, B.
AU - Xue, Y. Q.
AU - Tozzi, P.
AU - Shemmer, O.
AU - Allevato, V.
AU - Bauer, F. E.
AU - Comastri, A.
AU - Gilli, R.
AU - Koekemoer, A. M.
AU - Liu, T.
AU - Vignali, C.
AU - Vito, F.
AU - Yang, G.
AU - Wang, J. X.
AU - Zheng, X. C.
N1 - Publisher Copyright:
© 2017 The Authors.
PY - 2017/11
Y1 - 2017/11
N2 - We study the X-ray variability properties of distant active galactic nuclei (AGNs) in the Chandra Deep Field-South region over 17 yr, up to z ~4, and compare them with those predicted by models based on local samples. We use the results of Monte Carlo simulations to account for the biases introduced by the discontinuous sampling and the low-count regime. We confirm that variability is a ubiquitous property of AGNs, with no clear dependence on the density of the environment. The variability properties of high-z AGNs, over different temporal time-scales, are most consistent with a power spectral density (PSD) described by a broken (or bending) power law, similar to nearby AGNs. We confirm the presence of an anticorrelation between luminosity and variability, resulting from the dependence of variability on black hole (BH) mass and accretion rate. We explore different models, finding that our acceptable solutions predict that BH mass influences the value of the PSD break frequency, while the Eddington ratio λEdd affects the PSD break frequency and, possibly, the PSD amplitude as well. We derive the evolution of the average λEdd as a function of redshift, finding results in agreement with measurements based on different estimators. The large statistical uncertainties make our results consistent with a constant Eddington ratio, although one of our models suggest a possible increase of λEdd with lookback time up to z ~2-3. We conclude that variability is a viable mean to trace the accretion history of supermassive BHs, whose usefulness will increase with future, wide-field/large effective area X-ray missions.
AB - We study the X-ray variability properties of distant active galactic nuclei (AGNs) in the Chandra Deep Field-South region over 17 yr, up to z ~4, and compare them with those predicted by models based on local samples. We use the results of Monte Carlo simulations to account for the biases introduced by the discontinuous sampling and the low-count regime. We confirm that variability is a ubiquitous property of AGNs, with no clear dependence on the density of the environment. The variability properties of high-z AGNs, over different temporal time-scales, are most consistent with a power spectral density (PSD) described by a broken (or bending) power law, similar to nearby AGNs. We confirm the presence of an anticorrelation between luminosity and variability, resulting from the dependence of variability on black hole (BH) mass and accretion rate. We explore different models, finding that our acceptable solutions predict that BH mass influences the value of the PSD break frequency, while the Eddington ratio λEdd affects the PSD break frequency and, possibly, the PSD amplitude as well. We derive the evolution of the average λEdd as a function of redshift, finding results in agreement with measurements based on different estimators. The large statistical uncertainties make our results consistent with a constant Eddington ratio, although one of our models suggest a possible increase of λEdd with lookback time up to z ~2-3. We conclude that variability is a viable mean to trace the accretion history of supermassive BHs, whose usefulness will increase with future, wide-field/large effective area X-ray missions.
UR - http://www.scopus.com/inward/record.url?scp=85032036877&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032036877&partnerID=8YFLogxK
U2 - 10.1093/mnras/stx1761
DO - 10.1093/mnras/stx1761
M3 - Article
AN - SCOPUS:85032036877
SN - 0035-8711
VL - 471
SP - 4398
EP - 4411
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -