Transcriptomic analyses of cacao cell suspensions in light and dark provide target genes for controlled flavonoid production

Adriana M. Gallego, Luisa F. Rojas, Oriana Parra, Héctor A. Rodriguez, Juan C. Mazo Rivas, Aura Inés Urrea, Lucía Atehortúa, Andrew S. Fister, Mark J. Guiltinan, Siela N. Maximova, Natalia Pabón-Mora

Research output: Contribution to journalArticlepeer-review

13 Scopus citations


Catechins, including catechin (C) and epicatechin (E), are the main type of flavonoids in cacao seeds. They play important roles in plant defense and have been associated with human health benefits. Although flavonoid biosynthesis has been extensively studied using in vitro and in vivo models, the regulatory mechanisms controlling their accumulation under light/dark conditions remain poorly understood. To identify differences in flavonoid biosynthesis (particularly catechins) under different light treatments, we used cacao cell suspensions exposed to white-blue light and darkness during 14 days. RNA-Seq was applied to evaluate differential gene expression. Our results indicate that light can effectively regulate flavonoid profiles, inducing a faster accumulation of phenolic compounds and shifting E/C ratios, in particular as a response to switching from white to blue light. The results demonstrated that HY5, MYB12, ANR and LAR were differentially regulated under light/dark conditions and could be targeted by overexpression aiming to improve catechin synthesis in cell cultures. In conclusion, our RNA-Seq analysis of cacao cells cultured under different light conditions provides a platform to dissect key aspects into the genetic regulatory network of flavonoids. These light-responsive candidate genes can be used further to modulate the flavonoid production in in vitro systems with value-added characteristics.

Original languageEnglish (US)
Article number13575
JournalScientific reports
Issue number1
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Transcriptomic analyses of cacao cell suspensions in light and dark provide target genes for controlled flavonoid production'. Together they form a unique fingerprint.

Cite this