Transformers as Game Players: Provable In-context Game-playing Capabilities of Pre-trained Models

Chengshuai Shi, Kun Yang, Jing Yang, Cong Shen

Research output: Contribution to journalConference articlepeer-review

Abstract

The in-context learning (ICL) capability of pre-trained models based on the transformer architecture has received growing interest in recent years. While theoretical understanding has been obtained for ICL in reinforcement learning (RL), the previous results are largely confined to the single-agent setting. This work proposes to further explore the in-context learning capabilities of pre-trained transformer models in competitive multi-agent games, i.e., in-context game-playing (ICGP). Focusing on the classical two-player zero-sum games, theoretical guarantees are provided to demonstrate that pre-trained transformers can provably learn to approximate Nash equilibrium in an in-context manner for both decentralized and centralized learning settings. As a key part of the proof, constructional results are established to demonstrate that the transformer architecture is sufficiently rich to realize celebrated multi-agent game-playing algorithms, in particular, decentralized V-learning and centralized VI-ULCB.

Original languageEnglish (US)
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: Dec 9 2024Dec 15 2024

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Transformers as Game Players: Provable In-context Game-playing Capabilities of Pre-trained Models'. Together they form a unique fingerprint.

Cite this