Abstract
We demonstrate that an energy-dense, 288 Wh kg−1 lithium-ion battery can provide 152 Wh kg−1 energy and 1056 W kg−1 power at ultralow temperatures such as −40 or −50 °C, contrary to virtually no performance expected under two simultaneous extremes: 4.04 mAh cm−2 cathode loading and −40 °C. Unleashing this huge potential of current battery materials is achieved through a self-heating structure by embedding a micron-thin nickel foil in the electrochemical energy storage cell. The heating process from −40 to 10 °C consumes only 5.1% of battery energy and takes 77 s. Further, based on the chemistry agnostic nature of self-heating, we present a generic chart to transform rate capability of lithium-ion and lithium metal batteries. These illustrative examples point to a new era of battery structure innovation, significantly broadening the performance envelopes of existing and emerging battery materials for electrified transportation.
Original language | English (US) |
---|---|
Article number | 230416 |
Journal | Journal of Power Sources |
Volume | 510 |
DOIs | |
State | Published - Oct 31 2021 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering