TY - JOUR
T1 - Transient receptor potential A1 channel contributes to activation of the muscle reflex
AU - Koba, Satoshi
AU - Hayes, Shawn G.
AU - Sinoway, Lawrence I.
PY - 2011/1
Y1 - 2011/1
N2 - This study was undertaken to elucidate the role played by transient receptor potential A1 channels (TRPA1) in activating the muscle reflex, a sympathoexcitatory drive originating in contracting muscle. First, we tested the hypothesis that stimulation of the TRPA1 located on muscle afferents reflexly increases sympathetic nerve activity. In decerebrate rats, allyl isothiocyanate, a TRPA1 agonist, was injected intra-arterially into the hindlimb muscle circulation. This led to a 33% increase in renal sympathetic nerve activity (RSNA). The effect of allyl isothiocyanate was a reflex because the response was prevented by sectioning the sciatic nerve. Second, we tested the hypothesis that blockade of TRPA1 reduces RSNA response to contraction. Thirty-second continuous static contraction of the hindlimb muscles, induced by electrical stimulation of the peripheral cut ends of L4 and L5 ventral roots, increased RSNA and blood pressure. The integrated RSNA during contraction was reduced by HC-030031, a TRPA1 antagonist, injected intra-arterially (163 ± 24 vs. 95 ± 21 arbitrary units, before vs. after HC-030031, P < 0.05). Third, we attempted to identify potential endogenous stimulants of TRPA1, responsible for activating the muscle reflex. Increases in RSNA in response to injection into the muscle circulation of arachidonic acid, bradykinin, and diprotonated phosphate, which are metabolic by-products of contraction and stimulants of muscle afferents during contraction, were reduced by HC-030031. These observations suggest that the TRPA1 located on muscle afferents is part of the muscle reflex and further support the notion that arachidonic acid metabolites, bradykinin, and diprotonated phosphate are candidates for endogenous agonists of TRPA1.
AB - This study was undertaken to elucidate the role played by transient receptor potential A1 channels (TRPA1) in activating the muscle reflex, a sympathoexcitatory drive originating in contracting muscle. First, we tested the hypothesis that stimulation of the TRPA1 located on muscle afferents reflexly increases sympathetic nerve activity. In decerebrate rats, allyl isothiocyanate, a TRPA1 agonist, was injected intra-arterially into the hindlimb muscle circulation. This led to a 33% increase in renal sympathetic nerve activity (RSNA). The effect of allyl isothiocyanate was a reflex because the response was prevented by sectioning the sciatic nerve. Second, we tested the hypothesis that blockade of TRPA1 reduces RSNA response to contraction. Thirty-second continuous static contraction of the hindlimb muscles, induced by electrical stimulation of the peripheral cut ends of L4 and L5 ventral roots, increased RSNA and blood pressure. The integrated RSNA during contraction was reduced by HC-030031, a TRPA1 antagonist, injected intra-arterially (163 ± 24 vs. 95 ± 21 arbitrary units, before vs. after HC-030031, P < 0.05). Third, we attempted to identify potential endogenous stimulants of TRPA1, responsible for activating the muscle reflex. Increases in RSNA in response to injection into the muscle circulation of arachidonic acid, bradykinin, and diprotonated phosphate, which are metabolic by-products of contraction and stimulants of muscle afferents during contraction, were reduced by HC-030031. These observations suggest that the TRPA1 located on muscle afferents is part of the muscle reflex and further support the notion that arachidonic acid metabolites, bradykinin, and diprotonated phosphate are candidates for endogenous agonists of TRPA1.
UR - http://www.scopus.com/inward/record.url?scp=78651342569&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78651342569&partnerID=8YFLogxK
U2 - 10.1152/ajpheart.00547.2009
DO - 10.1152/ajpheart.00547.2009
M3 - Article
C2 - 21076024
AN - SCOPUS:78651342569
SN - 0363-6135
VL - 300
SP - H201-H213
JO - American Journal of Physiology - Heart and Circulatory Physiology
JF - American Journal of Physiology - Heart and Circulatory Physiology
IS - 1
ER -