Transmission of water through a biocompatible polyurethane: Application to circulatory assist devices

J. Spence Reid, Gerson Rosenberg, William S. Pierce

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


The permeability characteristics of a water‐segmented polyurethane (Biomer) system under the conditions encountered in circulatory‐assist devices were investigated. A diffusion cell and permeability system providing precise control of membrane boundary conditions and allowing continuous measurement of water vapor transmission was designed. Liquid water at 37°C was used as the donor fluid and the system incorporated a constant‐flow nitrogen carrier gas and an optical dew point sensor downstream to determine the water vapor mass flow rate as a function of time. The mass flow rate was then numerically integrated and plotted against time to allow calculation of effective diffusion coefficient (D) by the dynamic time lag method. Steady‐state permeabilities were found to be insensitive to donor chamber hydrostatic pressure (50–200 mm Hg) indicating that bulk flow is not a transport mechanism in these membranes. The permeability coefficient (P) was independent of membrane thickness (H) over the four samples tested (0.0102, 0.0148, 0.0269, and 0.0366 cm), with an average value of 3.29 × 10−4cm2/s. Thus, diffusion was Fickian with negligible boundary layers. A plot of lag time versus H2 was linear (R = 0.98) yielding a value for D of 2.18 × 10−7cm2/s. A water–Biomer partition coefficient was determined for each sample with an average value of 1525, indicating a moderately hydrophilic membrane with a water sorption of 6.3% at 37°C. Since water transport is by Fickian diffusion in the absence of bulk flow, liquid water cannot be expected to accumulate in circulatory‐assist devices unless a condensing surface is maintained within the system.

Original languageEnglish (US)
Pages (from-to)1181-1202
Number of pages22
JournalJournal of Biomedical Materials Research
Issue number9
StatePublished - 1985

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering


Dive into the research topics of 'Transmission of water through a biocompatible polyurethane: Application to circulatory assist devices'. Together they form a unique fingerprint.

Cite this