Transparent ultrasound transducers for multiscale photoacoustic imaging

Haoyang Chen, Mohamed Osman, Shubham Mirg, Sumit Agrawal, Jiacheng Cai, Ajay Dangi, Sri Rajasekhar Kothapalli

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Scopus citations

Abstract

Photoacoustic imaging (PAI) is a hybrid imaging modality that uses ultrasound waves generated from light absorbing tissue chromophores to provide high spatial resolution and depth-resolved molecular information. However, conventional PAI setups involve complicated arrangement of optical components surrounding opaque ultrasound transducers to achieve a co-aligned optical illumination and ultrasound receiving field. This opacity of traditional ultrasound transducers impedes the miniaturization of the imaging head, besides precluding integration with other imaging modalities. To overcome these limitations, we recently fabricated a single element transparent ultrasound transducer (TUT) window using indium tin oxide (ITO) coated lithium niobate (LiNbO3) piezoelectric material and demonstrated its application for endoscopy and microscopy PAI applications. Extending on this work, we report new developments of TUTs to improve their detection bandwidth, sensitivity, and signal to noise ratio (SNR) while maintaining sufficient transparency. This includes investigating LiNbO3 and PMN-PT as transparent piezoelectric materials with different matching layer designs. Fabricated TUTs were characterized using pulse echo and electrical impedance analysis. The PAI performance of the fabricated TUTs were characterized using photoacoustic A-line signals from light absorbing targets. The proposed TUTs are low cost, easy to fabricate, and can be scaled and easily integrated into different PAI geometries such as: endoscopy, microscopy, and computed tomography systems for high-throughput imaging applications.

Original languageEnglish (US)
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2021
EditorsAlexander A. Oraevsky, Lihong V. Wang
PublisherSPIE
ISBN (Electronic)9781510641198
DOIs
StatePublished - 2021
EventPhotons Plus Ultrasound: Imaging and Sensing 2021 - Virtual, Online, United States
Duration: Mar 6 2021Mar 11 2021

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11642
ISSN (Print)1605-7422

Conference

ConferencePhotons Plus Ultrasound: Imaging and Sensing 2021
Country/TerritoryUnited States
CityVirtual, Online
Period3/6/213/11/21

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Transparent ultrasound transducers for multiscale photoacoustic imaging'. Together they form a unique fingerprint.

Cite this