Transport properties of hydroxide and proton conducting membranes

Michael R. Hibbs, Michael Anthony Hickner, Todd M. Alam, Sarah K. McIntyre, Cy H. Fujimoto, Chris J. Cornelius

Research output: Contribution to journalArticlepeer-review

331 Scopus citations


Hydroxide anion conducting solid polymer membranes, also termed anion exchange membranes, are becoming important materials for electrochemical technology, and activity in this field, spurred by renewed interest in alkaline fuel cells, is experiencing a resurgence. Solid polymer anion exchange membranes enable alkaline electrochemistry in devices such as fuel cells and electrolyzers and serve as a counterpoint to proton exchange membranes, of which there is a large body of literature. For their seeming importance, the details of transport in alkaline exchange membranes has not been explored thoroughly. In this work, a chloromethylated polymer with a polysulfone backbone was synthesized. 1H NMR spectroscopy was performed to determine the chloromethyl content and its position on the polymer structure. The chloromethylated polymer was solution cast to form clear, creasable films, and subsequent soaking of these films in aqueous trimethylamine gave benzyltrimethylammonium groups. The resulting anion exchange membranes swell in water and show varying degrees of ionic conductivity depending on their ion exchange capacity. The water mobility in the anion exchange membranes was greater than in previously studied proton exchange membranes; however, the transport properties in these new materials were lower than what might have been expected from the water behavior. This comparison gives some insight as to future anion exchange membrane design objectives.

Original languageEnglish (US)
Pages (from-to)2566-2573
Number of pages8
JournalChemistry of Materials
Issue number7
StatePublished - Apr 8 2008

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Materials Chemistry


Dive into the research topics of 'Transport properties of hydroxide and proton conducting membranes'. Together they form a unique fingerprint.

Cite this