TY - JOUR
T1 - Transport properties of hydroxide and proton conducting membranes
AU - Hibbs, Michael R.
AU - Hickner, Michael Anthony
AU - Alam, Todd M.
AU - McIntyre, Sarah K.
AU - Fujimoto, Cy H.
AU - Cornelius, Chris J.
PY - 2008/4/8
Y1 - 2008/4/8
N2 - Hydroxide anion conducting solid polymer membranes, also termed anion exchange membranes, are becoming important materials for electrochemical technology, and activity in this field, spurred by renewed interest in alkaline fuel cells, is experiencing a resurgence. Solid polymer anion exchange membranes enable alkaline electrochemistry in devices such as fuel cells and electrolyzers and serve as a counterpoint to proton exchange membranes, of which there is a large body of literature. For their seeming importance, the details of transport in alkaline exchange membranes has not been explored thoroughly. In this work, a chloromethylated polymer with a polysulfone backbone was synthesized. 1H NMR spectroscopy was performed to determine the chloromethyl content and its position on the polymer structure. The chloromethylated polymer was solution cast to form clear, creasable films, and subsequent soaking of these films in aqueous trimethylamine gave benzyltrimethylammonium groups. The resulting anion exchange membranes swell in water and show varying degrees of ionic conductivity depending on their ion exchange capacity. The water mobility in the anion exchange membranes was greater than in previously studied proton exchange membranes; however, the transport properties in these new materials were lower than what might have been expected from the water behavior. This comparison gives some insight as to future anion exchange membrane design objectives.
AB - Hydroxide anion conducting solid polymer membranes, also termed anion exchange membranes, are becoming important materials for electrochemical technology, and activity in this field, spurred by renewed interest in alkaline fuel cells, is experiencing a resurgence. Solid polymer anion exchange membranes enable alkaline electrochemistry in devices such as fuel cells and electrolyzers and serve as a counterpoint to proton exchange membranes, of which there is a large body of literature. For their seeming importance, the details of transport in alkaline exchange membranes has not been explored thoroughly. In this work, a chloromethylated polymer with a polysulfone backbone was synthesized. 1H NMR spectroscopy was performed to determine the chloromethyl content and its position on the polymer structure. The chloromethylated polymer was solution cast to form clear, creasable films, and subsequent soaking of these films in aqueous trimethylamine gave benzyltrimethylammonium groups. The resulting anion exchange membranes swell in water and show varying degrees of ionic conductivity depending on their ion exchange capacity. The water mobility in the anion exchange membranes was greater than in previously studied proton exchange membranes; however, the transport properties in these new materials were lower than what might have been expected from the water behavior. This comparison gives some insight as to future anion exchange membrane design objectives.
UR - http://www.scopus.com/inward/record.url?scp=42449155538&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=42449155538&partnerID=8YFLogxK
U2 - 10.1021/cm703263n
DO - 10.1021/cm703263n
M3 - Article
AN - SCOPUS:42449155538
SN - 0897-4756
VL - 20
SP - 2566
EP - 2573
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 7
ER -