Abstract
The barrier height at the Pt/Gd2O3 interface is determined by current-voltage measurements. Current conduction is found to be governed by carrier injection from the electrode, with a barrier height of 0.6 0.1 eV. This value, which was verified by the method suggested by Zafar [Appl. Phys. Lett. 80, 4858 (2002)], is much smaller than the difference between the metal work function (5.6 eV) and the oxide electron affinity (1.95-2.05 eV). As Fermi-level pinning is not dominant at Pt/Gd2O3 interfaces, it is proposed that electrons are injected into a defect-related energy band in the oxide. The existence of such a defect, as well as its position in the oxide forbidden energy bandgap, agrees with results obtained by magnetic resonance measurements.
Original language | English (US) |
---|---|
Article number | 073724 |
Journal | Journal of Applied Physics |
Volume | 109 |
Issue number | 7 |
DOIs | |
State | Published - Apr 1 2011 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy