TY - JOUR
T1 - True and false gharials
T2 - A nuclear gene phylogeny of Crocodylia
AU - Harshman, John
AU - Huddleston, Christopher J.
AU - Bollback, Jonathan P.
AU - Parsons, Thomas J.
AU - Braun, Michael J.
PY - 2003/6
Y1 - 2003/6
N2 - The phylogeny of Crocodylia offers an unusual twist on the usual molecules versus morphology story. The true gharial (Gavialis gangeticus) and the false gharial (Tomistoma schlegelii), as their common names imply, have appeared in all cladistic morphological analyses as distantly related species, convergent upon a similar morphology. In contrast, all previous molecular studies have shown them to be sister taxa. We present the first phylogenetic study of Crocodylia using a nuclear gene. We cloned and sequenced the c-myc proto-oncogene from Alligator mississippiensis to facilitate primer design and then sequenced an 1,100-base pair fragment that includes both coding and noncoding regions and informative indels for one species in each extant crocodylian genus and six avian outgroups. Phylogenetic analyses using parsimony, maximum likelihood, and Bayesian inference all strongly agreed on the same tree, which is identical to the tree found in previous molecular analyses: Gavialis and Tomistoma are sister taxa and together are the sister group of Crocodylidae. Kishino-Hasegawa tests rejected the morphological tree in favor of the molecular tree. We excluded long-branch attraction and variation in base composition among taxa as explanations for this topology. To explore the causes of discrepancy between molecular and morphological estimates of crocodylian phylogeny, we examined puzzling features of the morphological data using a priori partitions of the data based on anatomical regions and investigated the effects of different coding schemes for two obvious morphological similarities of the two gharials.
AB - The phylogeny of Crocodylia offers an unusual twist on the usual molecules versus morphology story. The true gharial (Gavialis gangeticus) and the false gharial (Tomistoma schlegelii), as their common names imply, have appeared in all cladistic morphological analyses as distantly related species, convergent upon a similar morphology. In contrast, all previous molecular studies have shown them to be sister taxa. We present the first phylogenetic study of Crocodylia using a nuclear gene. We cloned and sequenced the c-myc proto-oncogene from Alligator mississippiensis to facilitate primer design and then sequenced an 1,100-base pair fragment that includes both coding and noncoding regions and informative indels for one species in each extant crocodylian genus and six avian outgroups. Phylogenetic analyses using parsimony, maximum likelihood, and Bayesian inference all strongly agreed on the same tree, which is identical to the tree found in previous molecular analyses: Gavialis and Tomistoma are sister taxa and together are the sister group of Crocodylidae. Kishino-Hasegawa tests rejected the morphological tree in favor of the molecular tree. We excluded long-branch attraction and variation in base composition among taxa as explanations for this topology. To explore the causes of discrepancy between molecular and morphological estimates of crocodylian phylogeny, we examined puzzling features of the morphological data using a priori partitions of the data based on anatomical regions and investigated the effects of different coding schemes for two obvious morphological similarities of the two gharials.
UR - http://www.scopus.com/inward/record.url?scp=0037771494&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037771494&partnerID=8YFLogxK
U2 - 10.1080/10635150390197028
DO - 10.1080/10635150390197028
M3 - Article
C2 - 12775527
AN - SCOPUS:0037771494
SN - 1063-5157
VL - 52
SP - 386
EP - 402
JO - Systematic Biology
JF - Systematic Biology
IS - 3
ER -