TY - GEN
T1 - Truly 3D midsagittal plane extraction for robust neuroimage registration
AU - Teverovskiy, Leonid
AU - Liu, Yanxi
PY - 2006/11/17
Y1 - 2006/11/17
N2 - This paper describes a robust algorithm for reliable ideal Midsagittal Plane extraction (iMSP) from 3D neuroimages. The algorithm makes no assumptions about initial orientation of a given 3D brain image and works reliably on neuroimages of normal brains as well as brains with significant pathologies. Presented technique is truly three-dimensional since we treat each neuroimage as a three-dimensional volume rather than a set of two-dimensional slices. We use an edge-based approach which employs cross-correlation to extract iMSP. Proposed algorithm was quantitatively evaluated on a variety of real and artificial neuroimages. We find that our algorithm is able to extract iMSP from neuroimages with arbitrary initial orientations, large asymmetries, and low signal to noise ratio. We also demonstrate that presented algorithm can increase robustness of existing neuroimage registration algorithms, be it rigid, affine or less restricted deformable registration. Our algorithm was implemented using Insight Toolkit(ITK).
AB - This paper describes a robust algorithm for reliable ideal Midsagittal Plane extraction (iMSP) from 3D neuroimages. The algorithm makes no assumptions about initial orientation of a given 3D brain image and works reliably on neuroimages of normal brains as well as brains with significant pathologies. Presented technique is truly three-dimensional since we treat each neuroimage as a three-dimensional volume rather than a set of two-dimensional slices. We use an edge-based approach which employs cross-correlation to extract iMSP. Proposed algorithm was quantitatively evaluated on a variety of real and artificial neuroimages. We find that our algorithm is able to extract iMSP from neuroimages with arbitrary initial orientations, large asymmetries, and low signal to noise ratio. We also demonstrate that presented algorithm can increase robustness of existing neuroimage registration algorithms, be it rigid, affine or less restricted deformable registration. Our algorithm was implemented using Insight Toolkit(ITK).
UR - http://www.scopus.com/inward/record.url?scp=33750957105&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33750957105&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:33750957105
SN - 0780395778
SN - 9780780395770
T3 - 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro - Proceedings
SP - 860
EP - 863
BT - 2006 3rd IEEE International Symposium on Biomedical Imaging
T2 - 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro
Y2 - 6 April 2006 through 9 April 2006
ER -