Abstract
The outstanding optoelectronic and valleytronic properties of transition metal dichalcogenides (TMDs) have triggered intense research efforts by the scientific community. An alternative to induce long-range ferromagnetism (FM) in TMDs is by introducing magnetic dopants to form a dilute magnetic semiconductor. Enhancing ferromagnetism in these semiconductors not only represents a key step toward modern TMD-based spintronics, but also enables exploration of new and exciting dimensionality-driven magnetic phenomena. To this end, tunable ferromagnetism at room temperature and a thermally induced spin flip (TISF) in monolayers of V-doped WSe2 are shown. As vanadium concentration increases, the saturation magnetization increases, which is optimal at ≈4 at% vanadium; the highest doping level ever achieved for V-doped WSe2 monolayers. The TISF occurs at ≈175 K and becomes more pronounced upon increasing the temperature toward room temperature. The TISF can be manipulated by changing the vanadium concentration. The TISF is attributed to the magnetic-field- and temperature-dependent flipping of the nearest W-site magnetic moments that are antiferromagnetically coupled to the V magnetic moments in the ground state. This is fully supported by a recent spin-polarized density functional theory study. The findings pave the way for the development of novel spintronic and valleytronic nanodevices and stimulate further research.
Original language | English (US) |
---|---|
Article number | 2003607 |
Journal | Advanced Materials |
Volume | 32 |
Issue number | 45 |
DOIs | |
State | Published - Nov 12 2020 |
All Science Journal Classification (ASJC) codes
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
Fingerprint
Dive into the research topics of 'Tunable Ferromagnetism and Thermally Induced Spin Flip in Vanadium-Doped Tungsten Diselenide Monolayers at Room Temperature'. Together they form a unique fingerprint.Equipment
-
MRI-MCL-TEM-FEI Titan3 G2
Stapleton, J. J. (Manager)
Materials Characterization LabEquipment/facility: Equipment