Tunable nonlinear and active THz devices based on hybrid graphene metasurfaces

Tianjing Guo, Christos Argyropoulos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Graphene is a two-dimensional layer of carbon atoms arranged in a honeycomb lattice, whose outstanding properties makes it an excellent material for future electronic and photonic terahertz (THz) devices. In this work, we design hybrid graphene metasurfaces by using a monolayer graphene placed over a metallic grating, operating in the THz frequency range. Perfect absorption can be achieved at the resonance, where the electric field is greatly enhanced due to the coupling between the graphene and the grating plasmonic responses. The enhancement of the electric field along the graphene monolayer, as well as the large nonlinear conductivity of graphene, can dramatically boost the nonlinear response of the proposed THz device. In addition, the presented enhanced nonlinear effects can be significantly tuned by varying the doping level of graphene. The proposed structure can be used in the design of THz-frequency generators and all-optical processors.

Original languageEnglish (US)
Title of host publicationMicro- and Nanotechnology Sensors, Systems, and Applications XI
EditorsThomas George, M. Saif Islam
PublisherSPIE
ISBN (Electronic)9781510626294
DOIs
StatePublished - 2019
Event2019 Micro- and Nanotechnology (MNT) Sensors, Systems, and Applications XI Conference - Baltimore, United States
Duration: Apr 14 2019Apr 18 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10982
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference2019 Micro- and Nanotechnology (MNT) Sensors, Systems, and Applications XI Conference
Country/TerritoryUnited States
CityBaltimore
Period4/14/194/18/19

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Tunable nonlinear and active THz devices based on hybrid graphene metasurfaces'. Together they form a unique fingerprint.

Cite this