Tunnel FET technology: A reliability perspective

Suman Datta, Huichu Liu, Vijaykrishnan Narayanan

Research output: Contribution to journalArticlepeer-review

169 Scopus citations


Tunneling-field-effect-transistor (TFET) has emerged as an alternative for conventional CMOS by enabling the supply voltage (VDD) scaling in ultra-low power, energy efficient computing, due to its sub-60 mV/decade sub-threshold slope (SS). Given its unique device characteristics such as the asymmetrical source/drain design induced uni-directional conduction, enhanced on-state Miller capacitance effect and steep switching at low voltages, TFET based circuit design requires strong interactions between the device-level and the circuit-level to explore the performance benefits, with certain modifications of the conventional CMOS circuits to achieve the functionality and optimal energy efficiency. Because TFET operates at low supply voltage range (VDD<0.5V) to outperform CMOS, reliability issues can have profound impact on the circuit design from the practical application perspective. In this review paper, we present recent development on Tunnel FET device design, and modeling technique for circuit implementation and performance benchmarking. We focus on the reliability issues such as soft-error, electrical noise and process variation, and their impact on TFET based circuit performance compared to sub-threshold CMOS. Analytical models of electrical noise and process variation are also discussed for circuit-level simulation.

Original languageEnglish (US)
Pages (from-to)861-874
Number of pages14
JournalMicroelectronics Reliability
Issue number5
StatePublished - May 2014

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Safety, Risk, Reliability and Quality
  • Surfaces, Coatings and Films
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Tunnel FET technology: A reliability perspective'. Together they form a unique fingerprint.

Cite this