Tunneling current-controlled spin states in few-layer van der Waals magnets

Zhuang En Fu, Piumi I. Samarawickrama, John Ackerman, Yanglin Zhu, Zhiqiang Mao, Kenji Watanabe, Takashi Taniguchi, Wenyong Wang, Yuri Dahnovsky, Mingzhong Wu, Te Yu Chien, Jinke Tang, Allan H. MacDonald, Hua Chen, Jifa Tian

Research output: Contribution to journalArticlepeer-review

Abstract

Effective control of magnetic phases in two-dimensional magnets would constitute crucial progress in spintronics, holding great potential for future computing technologies. Here, we report a new approach of leveraging tunneling current as a tool for controlling spin states in CrI3. We reveal that a tunneling current can deterministically switch between spin-parallel and spin-antiparallel states in few-layer CrI3, depending on the polarity and amplitude of the current. We propose a mechanism involving nonequilibrium spin accumulation in the graphene electrodes in contact with the CrI3 layers. We further demonstrate tunneling current-tunable stochastic switching between multiple spin states of the CrI3 tunnel devices, which goes beyond conventional bi-stable stochastic magnetic tunnel junctions and has not been documented in two-dimensional magnets. Our findings not only address the existing knowledge gap concerning the influence of tunneling currents in controlling the magnetism in two-dimensional magnets, but also unlock possibilities for energy-efficient probabilistic and neuromorphic computing.

Original languageEnglish (US)
Article number3630
JournalNature communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Tunneling current-controlled spin states in few-layer van der Waals magnets'. Together they form a unique fingerprint.

Cite this