Abstract
A biped mountable robotic baby head was developed using a combination of Biometal fiber and Flexinol shape memory alloy actuators (SMAs). SMAs were embedded in the skull and connected to the elastomeric skin at control points. An engineered architecture of the skull was fabricated, which incorporates all the SMA wires with 35 routine pulleys, two firewire complementary metal-oxide semiconductor cameras that serve as eyes, and a battery powered microcontroller base driving circuit with a total dimension of 140×90×110 mm3. The driving circuit was designed such that it can be easily integrated with a biped and allows programming in real-time. This 12DOF head was mounted on the body of a 21DOF miniature bipedal robot, resulting in a humanoid robot with a total of 33DOFs. Characterization results on the face and associated design issues are described, which provides a pathway for developing a humanlike facial anatomy using wire-based muscles. Numerical simulation based on SIMULINK was conducted to assess the performance of the prototypic robotic face, mainly focusing on the jaw movement. The nonlinear dynamics model along with governing equations for SMA actuators containing transcendental and switching functions was solved numerically and a generalized SIMULINK model was developed. Issues related to the integration of the robotic head with a biped are discussed using the kinematic model.
Original language | English (US) |
---|---|
Article number | 011008 |
Journal | Journal of Mechanisms and Robotics |
Volume | 3 |
Issue number | 1 |
DOIs | |
State | Published - Jan 10 2011 |
All Science Journal Classification (ASJC) codes
- Mechanical Engineering