Twitches, Blinks, and Fidgets: Important Generators of Ongoing Neural Activity

Patrick James Drew, Aaron T. Winder, Qingguang Zhang

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Animals and humans continuously engage in small, spontaneous motor actions, such as blinking, whisking, and postural adjustments (“fidgeting”). These movements are accompanied by changes in neural activity in sensory and motor regions of the brain. The frequency of these motions varies in time, is affected by sensory stimuli, arousal levels, and pathology. These fidgeting behaviors can be entrained by sensory stimuli. Fidgeting behaviors will cause distributed, bilateral functional activation in the 0.01 to 0.1 Hz frequency range that will show up in functional magnetic resonance imaging and wide-field calcium neuroimaging studies, and will contribute to the observed functional connectivity among brain regions. However, despite the large potential of these behaviors to drive brain-wide activity, these fidget-like behaviors are rarely monitored. We argue that studies of spontaneous and evoked brain dynamics in awake animals and humans should closely monitor these fidgeting behaviors. Differences in these fidgeting behaviors due to arousal or pathology will “contaminate” ongoing neural activity, and lead to apparent differences in functional connectivity. Monitoring and accounting for the brain-wide activations by these behaviors is essential during experiments to differentiate fidget-driven activity from internally driven neural dynamics.

Original languageEnglish (US)
Pages (from-to)298-313
Number of pages16
JournalNeuroscientist
Volume25
Issue number4
DOIs
StatePublished - Aug 1 2019

All Science Journal Classification (ASJC) codes

  • General Neuroscience
  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Twitches, Blinks, and Fidgets: Important Generators of Ongoing Neural Activity'. Together they form a unique fingerprint.

Cite this