Two fluid modeling of microbubble turbulent drag reduction

Research output: Chapter in Book/Report/Conference proceedingConference contribution

27 Scopus citations

Abstract

An unstructured 3D multiphase CFD method has been adapted and applied for the modeling of high Reynolds number external flows with microbubble drag reduction (MDR). An ensemble averaged multi-field two-fluid baseline differential model is employed. Interfacial dynamics models are incorporated to account for drag, lift, virtual mass and dispersion. Wall kinematic constraints, porous-wall shear apportionment, coalescence, breakup and attendant turbulence attenuation are also accounted for. The results of several high Reynolds number applications are presented, including quasi-1D analysis of an equilibrium bubbly boundary layer, 2D analysis of flat plate flow across a range of gas injection flow rates, and 3D analysis of a notional high lift hydrofoil with MDR. For the flat plate analyses, quantitative comparisons are made with available experimental skin friction measurements, and qualitative comparisons are made with available volume fraction profile measurements. Though some accuracy shortcomings remain, the generally good agreement observed serves to validate the appropriateness of two-fluid modeling in these flows, while elucidating areas where modeling improvements can be made. It is observed that the extraction of turbulent kinetic energy from the liquid phase by the action of bubble breakup can be a significant source of skin friction reduction. Also, the role of mixture density in the boundary layer on wall shear stress is discussed in the context of the homogenous mixture and two-fluid simulations presented.

Original languageEnglish (US)
Title of host publicationProceedings of the 4th ASME/JSME Joint Fluids Engineering Conference
Subtitle of host publicationVolume 2, Part A, Symposia
EditorsA. Ogut, Y. Tsuji, M. Kawahashi
PublisherAmerican Society of Mechanical Engineers
Pages609-618
Number of pages10
ISBN (Print)0791836967, 9780791836965
DOIs
StatePublished - 2003
Event4th ASME/JSME Joint Fluids Engineering Conference - Honolulu, HI, United States
Duration: Jul 6 2003Jul 10 2003

Publication series

NameProceedings of the ASME/JSME Joint Fluids Engineering Conference
Volume2 A

Other

Other4th ASME/JSME Joint Fluids Engineering Conference
Country/TerritoryUnited States
CityHonolulu, HI
Period7/6/037/10/03

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Two fluid modeling of microbubble turbulent drag reduction'. Together they form a unique fingerprint.

Cite this