TY - JOUR
T1 - Two-hop secure communication using an untrusted relay
AU - Yener, Aylin
AU - He, Xiang
N1 - Funding Information:
This work was presented in part at the IEEE Globecom Conference, December 2008. This work is supported in part by the National Science Foundation with Grants CCR-0237727, CCF-051483, CNS-0716325, CNS-0721445, and the DARPA ITMANET Program with Grant W911NF-07-1-0028.
PY - 2009
Y1 - 2009
N2 - We consider a source-destination pair that can only communicate through an untrusted intermediate relay node. The intermediate node is willing to employ a designated relaying scheme to facilitate reliable communication between the source and the destination. Yet, the information it relays needs to be kept secret from it. In this two-hop communication scenario, where the use of the untrusted relay node is essential, we find that a positive secrecy rate is achievable. The center piece of the achievability scheme is the help provided by either the destination node with transmission capability, or an external good samaritan node. In either case, the helper performs cooperative jamming that confuses the eavesdropping relay and disables it from being able to decipher what it is relaying. We next derive an upper bound on the secrecy rate for this system. We observe that the gap between the upper bound and the achievable rate vanishes as the power of the relay node goes to infinity. Overall, the paper presents a case for intentional interference, that is, cooperative jamming, as an enabler for secure communication.
AB - We consider a source-destination pair that can only communicate through an untrusted intermediate relay node. The intermediate node is willing to employ a designated relaying scheme to facilitate reliable communication between the source and the destination. Yet, the information it relays needs to be kept secret from it. In this two-hop communication scenario, where the use of the untrusted relay node is essential, we find that a positive secrecy rate is achievable. The center piece of the achievability scheme is the help provided by either the destination node with transmission capability, or an external good samaritan node. In either case, the helper performs cooperative jamming that confuses the eavesdropping relay and disables it from being able to decipher what it is relaying. We next derive an upper bound on the secrecy rate for this system. We observe that the gap between the upper bound and the achievable rate vanishes as the power of the relay node goes to infinity. Overall, the paper presents a case for intentional interference, that is, cooperative jamming, as an enabler for secure communication.
UR - http://www.scopus.com/inward/record.url?scp=76649123145&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=76649123145&partnerID=8YFLogxK
U2 - 10.1155/2009/305146
DO - 10.1155/2009/305146
M3 - Article
AN - SCOPUS:76649123145
SN - 1687-1472
VL - 2009
JO - Eurasip Journal on Wireless Communications and Networking
JF - Eurasip Journal on Wireless Communications and Networking
M1 - 305146
ER -