TY - GEN
T1 - Two-phase type-curve analysis of flowback data from hydraulically fractured hydrocarbon reservoirs
AU - Zhang, Fengyuan
AU - Emami-Meybodi, Hamid
N1 - Funding Information:
This research is supported by the Science Foundation of China University of Petroleum, Beijing (No. 2462021BJRC003). This research was enabled with the use of the software packages provided by Computer Modelling Group, Inc. (CMG) and IHS Markit.
Publisher Copyright:
© 2021, Society of Petroleum Engineers
PY - 2021
Y1 - 2021
N2 - This study presents a new type-curve method to characterize hydraulic fracture (HF) attributes and dynamics by analyzing two-phase flowback data from multi-fractured horizontal wells (MFHWs) in hydrocarbon reservoirs.The proposed method includes a semianalytical model, as well as a workflow to estimate HF properties (i.e., initial fracture pore-volume and fracture permeability) and HF closure dynamics (through iterating fracture compressibility and permeability modulus).The semianalytical model considers the coupled two-phase flow in the fracture and matrix system, the variable production rate at the well, as well as the pressure-dependent reservoir and fluid properties. By incorporating the contribution of fluid influx from matrix into the fracture effective compressibility, a new set of dimensionless groups is defined to obtain a dimensionless solution for type-curve analysis. The accuracy of the proposed method is tested using the synthetic data generated from six numerical simulation cases for shale gas and oil reservoirs. The numerical validation confirms the unique behavior of type curves during fracture boundary dominated flow and verifies the accuracy of the type-curve analysis in the characterization of fracture properties. For field application, the proposed method is applied to two MFHWs in Marcellus shale gas and Eagle Ford shale oil.The agreement of interpreted results between the proposed method and straight-line analysis not only demonstrates the practicality in field application but also illustrates the superiority of the type-curve method as an easy-to-use technique to analyze two-phase flowback data. The analysis results from both of the field examples reveal the consistency in the estimated fracture properties between the proposed method and long-term history matching.
AB - This study presents a new type-curve method to characterize hydraulic fracture (HF) attributes and dynamics by analyzing two-phase flowback data from multi-fractured horizontal wells (MFHWs) in hydrocarbon reservoirs.The proposed method includes a semianalytical model, as well as a workflow to estimate HF properties (i.e., initial fracture pore-volume and fracture permeability) and HF closure dynamics (through iterating fracture compressibility and permeability modulus).The semianalytical model considers the coupled two-phase flow in the fracture and matrix system, the variable production rate at the well, as well as the pressure-dependent reservoir and fluid properties. By incorporating the contribution of fluid influx from matrix into the fracture effective compressibility, a new set of dimensionless groups is defined to obtain a dimensionless solution for type-curve analysis. The accuracy of the proposed method is tested using the synthetic data generated from six numerical simulation cases for shale gas and oil reservoirs. The numerical validation confirms the unique behavior of type curves during fracture boundary dominated flow and verifies the accuracy of the type-curve analysis in the characterization of fracture properties. For field application, the proposed method is applied to two MFHWs in Marcellus shale gas and Eagle Ford shale oil.The agreement of interpreted results between the proposed method and straight-line analysis not only demonstrates the practicality in field application but also illustrates the superiority of the type-curve method as an easy-to-use technique to analyze two-phase flowback data. The analysis results from both of the field examples reveal the consistency in the estimated fracture properties between the proposed method and long-term history matching.
UR - http://www.scopus.com/inward/record.url?scp=85116675288&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85116675288&partnerID=8YFLogxK
U2 - 10.2118/206312-MS
DO - 10.2118/206312-MS
M3 - Conference contribution
AN - SCOPUS:85116675288
T3 - Proceedings - SPE Annual Technical Conference and Exhibition
BT - Society of Petroleum Engineers - SPE Annual Technical Conference and Exhibition 2021, ATCE 2021
PB - Society of Petroleum Engineers (SPE)
T2 - SPE Annual Technical Conference and Exhibition 2021, ATCE 2021
Y2 - 21 September 2021 through 23 September 2021
ER -