TY - GEN
T1 - Twofold video hashing with automatic synchronization
AU - Li, Mu
AU - Monga, Vishal
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/1/28
Y1 - 2014/1/28
N2 - Video hashing finds a wide array of applications in content authentication, robust retrieval and anti-piracy search. While much of the existing research has focused on extracting robust and secure content descriptors, a significant open challenge still remains: Most existing video hashing methods are fallible to temporal desynchronization. That is, when the query video results by deleting or inserting some frames from the reference video, most existing methods assume the positions of the deleted (or inserted) frames are either perfectly known or reliably estimated. This assumption may be okay under typical transcoding and frame-rate changes but is highly inappropriate in adversarial scenarios such as anti-piracy video search. For example, an illegal uploader will try to bypass the 'piracy check' mechanism of YouTube/Dailymotion etc by performing a cleverly designed non-uniform resampling of the video. We present a new solution based on dynamic time warping (DTW), which can implement automatic synchronization and can be used together with existing video hashing methods. The second contribution of this paper is to propose a new robust feature extraction method called flow hashing (FH), based on frame averaging and optical flow descriptors. Finally, a fusion mechanism called distance boosting is proposed to combine the information extracted by DTW and FH. Experiments on real video collections show that such a hash extraction and comparison enables unprecedented robustness under both spatial and temporal attacks.
AB - Video hashing finds a wide array of applications in content authentication, robust retrieval and anti-piracy search. While much of the existing research has focused on extracting robust and secure content descriptors, a significant open challenge still remains: Most existing video hashing methods are fallible to temporal desynchronization. That is, when the query video results by deleting or inserting some frames from the reference video, most existing methods assume the positions of the deleted (or inserted) frames are either perfectly known or reliably estimated. This assumption may be okay under typical transcoding and frame-rate changes but is highly inappropriate in adversarial scenarios such as anti-piracy video search. For example, an illegal uploader will try to bypass the 'piracy check' mechanism of YouTube/Dailymotion etc by performing a cleverly designed non-uniform resampling of the video. We present a new solution based on dynamic time warping (DTW), which can implement automatic synchronization and can be used together with existing video hashing methods. The second contribution of this paper is to propose a new robust feature extraction method called flow hashing (FH), based on frame averaging and optical flow descriptors. Finally, a fusion mechanism called distance boosting is proposed to combine the information extracted by DTW and FH. Experiments on real video collections show that such a hash extraction and comparison enables unprecedented robustness under both spatial and temporal attacks.
UR - http://www.scopus.com/inward/record.url?scp=84934332205&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84934332205&partnerID=8YFLogxK
U2 - 10.1109/ICIP.2014.7026085
DO - 10.1109/ICIP.2014.7026085
M3 - Conference contribution
AN - SCOPUS:84934332205
T3 - 2014 IEEE International Conference on Image Processing, ICIP 2014
SP - 5362
EP - 5366
BT - 2014 IEEE International Conference on Image Processing, ICIP 2014
PB - Institute of Electrical and Electronics Engineers Inc.
ER -