Ultrafast electron-phonon coupling in hollow gold nanospheres

Anne Marie Dowgiallo, Kenneth L. Knappenberger

Research output: Contribution to journalArticlepeer-review

29 Scopus citations


Electronic energy relaxation in hollow gold nanospheres (HGNs) was studied using femtosecond time-resolved transient absorption spectroscopy. A range of HGNs having outer diameter-to-shell thickness aspect ratios of 3.5 to 9.5 were synthesized by a galvanic replacement method. The HGNs exhibited electron-phonon relaxation times that decreased from 1.18 ± 0.16 to 0.59 ± 0.08 ps as the aspect ratio increased over this range. The corresponding electron-phonon coupling constants, G, ranged from (1.67 ± 0.22) to (3.33 ± 0.45) × 1016 W m-3 K-1. Electron-phonon coupling was also determined for solid gold nanospheres (SGNs) with diameters spanning 20 nm to 83 nm; no size dependence was observed for these structures. The HGNs with high aspect ratios exhibited larger electron-phonon coupling constants than the SGNs, whose average G value was (1.9 ± 0.2) × 1016 W m-3 K-1. By comparison, low-aspect ratio HGNs exhibited values comparable to SGNs. The electron-phonon coupling of high-aspect ratio HGNs was also influenced by the surrounding fluid dielectric; slightly smaller G values were obtained when methanol was the solvent as opposed to water. This coupling enhancement observed for high-aspect ratio HGNs was attributed to the large surface to volume ratio of these structures, which results in non-negligible contributions from the environment.

Original languageEnglish (US)
Pages (from-to)21585-21592
Number of pages8
JournalPhysical Chemistry Chemical Physics
Issue number48
StatePublished - Dec 28 2011

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Ultrafast electron-phonon coupling in hollow gold nanospheres'. Together they form a unique fingerprint.

Cite this