Abstract
Optical temperature sensing based on the variation of the fluorescence intensity ratio of rare-earth materials has become appealing due to the multiple superiorities over the electrical temperature sensing. However, confined by the largest energy separation of two thermally linked levels of rare-earth ions, the highest sensitivity of such temperature sensing is essentially smaller than 2878/T2, as reported previously from diverse systems. In this work, we demonstrate that ultrahigh-sensitive temperature sensing can be achieved from Pr3+-doped (K0.5Na0.5)NbO3 based on the intensity ratio of the 1D2-3H4 emission to the 3P0-3H4 emission. The ratio can be increased as high as 18-fold when temperature rises from room temperature to 456 K, nicely fitting a thermally linked-levels-like equation and showing an ultrahigh sensitivity of 7997/T2. The striking change of the ratio is attributed to the interaction between the two emission levels and the intervalence charge transfer state. This work may have provided a distinct route in the field of optical temperature sensing utilizing rare-earth-doped materials. In addition, the resultant product also possesses excellent photoluminescence and ferroelectric properties, showing promising potentials in multifunctional devices for practical applications.
Original language | English (US) |
---|---|
Article number | 061902 |
Journal | Applied Physics Letters |
Volume | 108 |
Issue number | 6 |
DOIs | |
State | Published - Feb 8 2016 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)