Ultrasound intensity to propel stones from the kidney is below the threshold for renal injury

Yak Nam Wang, Julianna C. Simon, Bryan Cunitz, Frank Starr, Marla Paun, Denny Liggitt, Andrew Evan, James McAteer, James Williams, Ziyue Liu, Peter Kaczkowski, Ryan Hsi, Mathew Sorensen, Jonathan Harper, Michael R. Bailey

Research output: Contribution to journalConference articlepeer-review


Therapeutic ultrasound has an increasing number of applications in urology, including shockwave lithotripsy, stone propulsion, tissue ablation, and hemostasis. However, the threshold of renal injury using ultrasound is unknown. The goal of this study was to determine kidney injury thresholds for a range of intensities between diagnostic and ablative therapeutic ultrasound. A 2 MHz annular array generating spatial peak pulse average intensities (ISPPA) up to 28,000 W/cm2 in water was placed on the surface of in vivo porcine kidneys and focused on the adjacent parenchyma. Treatments consisted of pulses of 100 μs duration triggered every 3 ms for 10 minutes at various intensities. The perfusion-fixed tissue was scored by 3 blinded independent experts. Above a threshold of 16,620 W/cm2, the majority of injury observed included emulsification, necrosis and hemorrhage. Below this threshold, almost all injury presented as focal cell and tubular swelling and/or degeneration. These findings provide evidence for a wide range of potentially therapeutic ultrasound intensities that has a low probability of causing injury. While this study did not examine all combinations of treatment parameters of therapeutic ultrasound, tissue injury appears dose-dependent.

Original languageEnglish (US)
Article number075066
JournalProceedings of Meetings on Acoustics
StatePublished - 2013
Event21st International Congress on Acoustics, ICA 2013 - 165th Meeting of the Acoustical Society of America - Montreal, QC, Canada
Duration: Jun 2 2013Jun 7 2013

All Science Journal Classification (ASJC) codes

  • Acoustics and Ultrasonics


Dive into the research topics of 'Ultrasound intensity to propel stones from the kidney is below the threshold for renal injury'. Together they form a unique fingerprint.

Cite this