Ultrasound-Responsive Hydrogels for On-Demand Protein Release

Julien H. Arrizabalaga, Molly Smallcomb, Mohammad Abu-Laban, Yiming Liu, Tyus J. Yeingst, Aman Dhawan, Julianna C. Simon, Daniel J. Hayes

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

The development of tunable, ultrasound-responsive hydrogels that can deliver protein payload on-demand when exposed to focused ultrasound is described in this study. Reversible Diels-Alder linkers, which undergo a retro reaction when stimulated with ultrasound, were used to cross-link chitosan hydrogels with entrapped FITC-BSA as a model protein therapeutic payload. Two Diels-Alder linkage compositions with large differences in the reverse reaction energy barriers were compared to explore the influence of linker composition on ultrasound response. Selected physicochemical properties of the hydrogel construct, its basic degradation kinetics, and its cytocompatibility were measured with respect to Diels-Alder linkage composition. Focused ultrasound initiated the retro Diels-Alder reaction, controlling the release of the entrapped payload while also allowing for real-time visualization of the ongoing process. Additionally, increasing the focused ultrasound amplitude and time correlated with an increased rate of protein release, indicating stimuli responsive control.

Original languageEnglish (US)
Pages (from-to)3212-3218
Number of pages7
JournalACS Applied Bio Materials
Volume5
Issue number7
DOIs
StatePublished - Jul 18 2022

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • General Chemistry
  • Biomedical Engineering
  • Biochemistry, medical

Fingerprint

Dive into the research topics of 'Ultrasound-Responsive Hydrogels for On-Demand Protein Release'. Together they form a unique fingerprint.

Cite this