Understand Users' Privacy Perception and Decision of V2X Communication in Connected Autonomous Vehicles

Cai Zekun, Xiong Aiping

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Connected autonomous vehicles (CAVs) offer opportunities to improve road safety and enhance traffic efficiency. Vehicleto- everything (V2X) communication allows CAVs to communicate with any entity that may affect, or may be affected by, the vehicles. The implementation of V2X in CAVs is inseparable from sharing and receiving a wide variety of data. Nevertheless, the public is not necessarily aware of such ubiquitous data exchange or does not understand their implications. We conducted an online study (N = 595) examining drivers' privacy perceptions and decisions of four V2X application scenarios. Participants perceived more benefits but fewer risks of data sharing in the V2X scenarios where data collection is critical for driving than otherwise. They also showed more willingness to share data in those scenarios. In addition, we found that participants' awareness of privacy risks (priming) and their experience on driving assistance and connectivity functions impacted their data-sharing decisions. Qualitative data confirmed that benefits, especially safety, come first, indicating a privacy-safety tradeoff. Moreover, factors such as misconceptions and novel expectations about CAV data collection and use moderated participants' privacy decisions. We discuss implications of the obtained results to inform CAV privacy design and development.

Original languageEnglish (US)
Title of host publication32nd USENIX Security Symposium, USENIX Security 2023
PublisherUSENIX Association
Pages2975-2992
Number of pages18
ISBN (Electronic)9781713879497
StatePublished - 2023
Event32nd USENIX Security Symposium, USENIX Security 2023 - Anaheim, United States
Duration: Aug 9 2023Aug 11 2023

Publication series

Name32nd USENIX Security Symposium, USENIX Security 2023
Volume4

Conference

Conference32nd USENIX Security Symposium, USENIX Security 2023
Country/TerritoryUnited States
CityAnaheim
Period8/9/238/11/23

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality

Cite this