Understanding Interlayer Coupling in TMD-hBN Heterostructure by Raman Spectroscopy

Li Ding, Muhammad Shoufie Ukhtary, Mikhail Chubarov, Tanushree H. Choudhury, Fu Zhang, Rui Yang, Ao Zhang, Jonathan A. Fan, Mauricio Terrones, Joan M. Redwing, Teng Yang, Mingda Li, Riichiro Saito, Shengxi Huang

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


In 2-D van der Waals heterostructures, interactions between atomic layers dramatically change the vibrational properties of the hybrid system and demonstrate several interesting phenomena that are absent in individual materials. In this paper, we have investigated the vibrational properties of the heterostructure between transition metal dichalcogenide (TMD) and hexagonal boron nitride (hBN) on gold film at low- and high-frequency ranges by Raman spectroscopy. Nineteen Raman modes have been observed from the sample, including a new interlayer coupling mode at 28.8 cm-1. Compared to reported experimental results of tungsten disulfide (WS2) on SiO2/Si substrates, the Raman spectrum for WS2 on hBN/Au emerges a blue shift of about 8 cm-1. Furthermore, a remarkable enhancement of Raman intensity can be obtained when tuning hBN thickness in the heterostructure. Through systematic first-principles calculations, numerical simulations, and analytical calculations, we find that the 28.8 cm-1 mode originates from the shearing motion between monolayer TMD and hBN layers. In addition, the gold substrate and hBN layers form an optical cavity and the cavity interference effects enhance the obtained Raman intensity. This paper demonstrates the novel vibrational modes of 2-D van der Waals heterostructure as an effective tool to characterize a variety of such heterostructures and reveals a new method to enhance the Raman response of 2-D materials.

Original languageEnglish (US)
Article number8409293
Pages (from-to)4059-4067
Number of pages9
JournalIEEE Transactions on Electron Devices
Issue number10
StatePublished - Oct 2018

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering


Dive into the research topics of 'Understanding Interlayer Coupling in TMD-hBN Heterostructure by Raman Spectroscopy'. Together they form a unique fingerprint.

Cite this