Understanding the differences in hemispherical dome and biaxial test during equi-biaxial tension on cruciform

Chetan P. Nikhare, Emmett Vorisek, John Nolan, John T. Roth

Research output: Chapter in Book/Report/Conference proceedingConference contribution


One metal manufacturing process which uses thousands of processes to trim, stretch, draw, bend etc. under a big umbrella is sheet metal forming. Using heavy equipment, the sheet metal parts are deformed into complex geometries. The complexity in these parts produces multi-axial stress and strain, a state for which it is critical to analyze using conventional tools. Traditionally, the mechanical properties of materials have been characterized using the uniaxial tension test. This test is considered adequate for simple forming operations where single axis loading is dominant. Previous studies, however, have noted that the data acquired from this type of testing is not enough and additional details in other axes under simultaneous deformation conditions are important. To analyze the biaxial strain, some studies have suggested using the limiting dome height test and bulge test. However, these tests limit the extent of using multiaxial loading and the resulting stress pattern due to contact surfaces. Therefore, researchers devised the biaxial machine which is designed specifically to provide biaxial stress components using multiple and varying loading conditions. The idea of this work is to evaluate the relationship between the dome test data and the biaxial test data. For this comparison, cruciform specimens with a diamond shaped thinner gage in the center were deformed with biaxial stretching on the biaxial testing machine. In addition, the cruciform specimens were bi-axially stretched with a hemispherical punch in a conventional die-punch setting. Furthermore, in each case, the process was simulated using a 3D model generated on ABAQUS. These models were then compared with the experimental results. The forces on each arm, strain path, forming and formability was analyzed. The differences between the processes were detailed. It was found that biaxial tests eliminated the pressurization effect which could be found in hemispherical dome tests.

Original languageEnglish (US)
Title of host publicationAdvanced Manufacturing
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791850527
StatePublished - 2016
EventASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016 - Phoenix, United States
Duration: Nov 11 2016Nov 17 2016

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)


OtherASME 2016 International Mechanical Engineering Congress and Exposition, IMECE 2016
Country/TerritoryUnited States

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering


Dive into the research topics of 'Understanding the differences in hemispherical dome and biaxial test during equi-biaxial tension on cruciform'. Together they form a unique fingerprint.

Cite this