Understanding the shape effect on the plasmonic response of small ligand coated nanoparticles

Xing Chen, Lasse Jensen

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


The plasmonic properties of metallic nanoparticles typically depend strongly on their shapes and local environment. However, not much is known about the shape effects on the plasmonic response in small metallic nanoparticles when quantum size effects become important. In this work, we use atomistic electrodynamics models incorporated with quantum size effects to study the optical properties of both bare and ligand coated Ag nanoparticles in different shapes. Using classical electrodynamics, we find that the plasmonic response of bare metallic nanoparticles depends strongly on the morphology of the nanoparticles due to the presence of higher-order plasmon modes. By including quantum size effects in the simulations, we find a significant blue-shift of the dipole plasmon as well as the smearing-out of the multipole plasmon modes, and both lead to a weak shape dependence. The ligand effects on the nanoparticles cause a significant red-shift of the plasmon resonance arising from the reduction of the conductivity of the Ag atoms where the ligands bind. In contrast to the bare nanoparticles, we find several higher-order plasmon modes in the ligand coated nanoparticles, that are likely caused by the weak electron spill-out effect and the symmetry breaking at the surface in the presence of the ligands. Furthermore, we show that the ligand layer strongly modify the near-field distribution due to the screening of the ligands. This work highlights the importance of quantum size and ligand effects on the optical properties of small metallic nanoparticles.

Original languageEnglish (US)
Article number074009
JournalJournal of Optics (United Kingdom)
Issue number7
StatePublished - Jul 2016

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Understanding the shape effect on the plasmonic response of small ligand coated nanoparticles'. Together they form a unique fingerprint.

Cite this