Unidirectional alignment of block copolymer films induced by expansion of a permeable elastomer during solvent vapor annealing

Zhe Qiang, Longhe Zhang, Gila E. Stein, Kevin A. Cavicchi, Bryan D. Vogt

Research output: Contribution to journalArticlepeer-review

72 Scopus citations

Abstract

One challenge associated with the utilization of block copolymers in nanotechnology is the difficulties associated with alignment and orientation of the self-assembled nanostructure on macroscopic length scales. Here we demonstrate a simple method to generate unidirectional alignment of the cylindrical domains of polystyrene-block-polyisoprene-block-polystyrene, SIS, based on a modification of the commonly utilized solvent vapor annealing (SVA) process. In this modification, cross-linked poly(dimethylsiloxane) (PDMS) is physically adhered to the SIS film during SVA; differential swelling of the PDMS and SIS produces a shear force to align the ordered domains of SIS in the areas covered by PDMS. This method is termed solvent vapor annealing with soft shear (SVA-SS). The alignment direction can be readily controlled by the shape and placement of the PDMS with the alignment angle equal to the diagonal across the rectangular PDMS pad due to a propagating deswelling front from directional drying of the PDMS by a dry air stream. Herman's (second order) orientational parameter, S, can quantify the quality of the alignment over large areas with S > 0.94 obtainable using SVA-SS.

Original languageEnglish (US)
Pages (from-to)1109-1116
Number of pages8
JournalMacromolecules
Volume47
Issue number3
DOIs
StatePublished - Feb 11 2014

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Unidirectional alignment of block copolymer films induced by expansion of a permeable elastomer during solvent vapor annealing'. Together they form a unique fingerprint.

Cite this