Untrusted Caches in Two-layer Networks

Ahmed A. Zewail, Aylin Yener

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations


This work considers a network consisting of a server and a layer of relay nodes equipped with cache memories which aim to deliver content to end nodes that also have cache memories. The server and the end nodes consider the intermediate relay caches to be untrusted with the content. As a result, the server must design strategies to place content in relay caches not only to serve end users, but also to ensure that any a subset of them, even when colluding, cannot gain any information about the contents of the server database. The end users randomly connect to a subset of these untrusted caches at the beginning of the delivery phase via multicast links. For this network model, a coded caching scheme is developed by jointly optimizing the cache placement and delivery phases using secure regenerating codes. In addition, the scheme is extended to the setup of combination networks with untrusted relays, where the untrusted relays are connected to the end users via unicast links. The study highlights the benefits of cooperating with untrusted caches by designing the end users' caches to provide multicast opportunities in order to minimize the delivery load.

Original languageEnglish (US)
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages5
ISBN (Electronic)9781538692912
StatePublished - Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: Jul 7 2019Jul 12 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095


Conference2019 IEEE International Symposium on Information Theory, ISIT 2019

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics


Dive into the research topics of 'Untrusted Caches in Two-layer Networks'. Together they form a unique fingerprint.

Cite this