TY - JOUR
T1 - Unusually long duration, multiple-doppler radar observations of front in a convective boundary layer
AU - Stonitsch, John R.
AU - Markowski, Paul M.
PY - 2007/1
Y1 - 2007/1
N2 - Dual-Doppler observations acquired by a network of mobile radars deployed in the Oklahoma panhandle on 3 June 2002 are used to document the kinematic structure and evolution of a front. The data were collected during the International H2O Project on a mission to study the initiation of deep convection. Synchronized scanning allowed for the synthesis of three-dimensional wind fields for nearly 5.5 h of the 1557-0000 UTC period. The front initially moved southward as a cold front, stalled, and later retreated northward as a warm front. Deep convection failed to be initiated along the front. In situ thermodynamic measurements obtained by a mobile mesonet were used to document changes in the density gradient at the surface. This paper examines the relationships among the changes in baroclinity, the thermally direct frontal circulation, updraft intensity, alongfront updraft variability, and the intensity of vortices along the front. Increases in the front-normal density gradient tended to be associated with increases in the thermally direct frontal circulation, as expected. Increases in the front-normal density gradient were also associated with an increase in the tilt of the frontal updraft as well as an increase in the contiguity of the updraft along the front, termed the "slabularity." During periods when the front-normal density gradient and associated thermally direct frontal circulation were weak, the kinematic fields were dominated by boundary layer convection and the slabularity of the front was reduced. Intensification of the front-normal density gradient was accompanied by an increase in the horizontal wind shear and the intensity of vortices that were observed along the front. The vortices modulated the vertical velocity field along the front and therefore the slabularity, too. Thus, although the slabularity was a strong function of the strength of the thermally direct frontal circulation, the slabularity appeared to be modified by vortices in complex ways. Possible implications of the observations for convection initiation are also discussed, particularly with respect to updraft tilt and slabularity.
AB - Dual-Doppler observations acquired by a network of mobile radars deployed in the Oklahoma panhandle on 3 June 2002 are used to document the kinematic structure and evolution of a front. The data were collected during the International H2O Project on a mission to study the initiation of deep convection. Synchronized scanning allowed for the synthesis of three-dimensional wind fields for nearly 5.5 h of the 1557-0000 UTC period. The front initially moved southward as a cold front, stalled, and later retreated northward as a warm front. Deep convection failed to be initiated along the front. In situ thermodynamic measurements obtained by a mobile mesonet were used to document changes in the density gradient at the surface. This paper examines the relationships among the changes in baroclinity, the thermally direct frontal circulation, updraft intensity, alongfront updraft variability, and the intensity of vortices along the front. Increases in the front-normal density gradient tended to be associated with increases in the thermally direct frontal circulation, as expected. Increases in the front-normal density gradient were also associated with an increase in the tilt of the frontal updraft as well as an increase in the contiguity of the updraft along the front, termed the "slabularity." During periods when the front-normal density gradient and associated thermally direct frontal circulation were weak, the kinematic fields were dominated by boundary layer convection and the slabularity of the front was reduced. Intensification of the front-normal density gradient was accompanied by an increase in the horizontal wind shear and the intensity of vortices that were observed along the front. The vortices modulated the vertical velocity field along the front and therefore the slabularity, too. Thus, although the slabularity was a strong function of the strength of the thermally direct frontal circulation, the slabularity appeared to be modified by vortices in complex ways. Possible implications of the observations for convection initiation are also discussed, particularly with respect to updraft tilt and slabularity.
UR - http://www.scopus.com/inward/record.url?scp=33846663157&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846663157&partnerID=8YFLogxK
U2 - 10.1175/MWR3261.1
DO - 10.1175/MWR3261.1
M3 - Article
AN - SCOPUS:33846663157
SN - 0027-0644
VL - 135
SP - 93
EP - 117
JO - Monthly Weather Review
JF - Monthly Weather Review
IS - 1
ER -