TY - JOUR
T1 - Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction
AU - Jost, Adam B.
AU - Bachan, Aviv
AU - van de Schootbrugge, Bas
AU - Lau, Kimberly V.
AU - Weaver, Karrie L.
AU - Maher, Kate
AU - Payne, Jonathan L.
N1 - Publisher Copyright:
© 2017. American Geophysical Union. All Rights Reserved.
PY - 2017/8
Y1 - 2017/8
N2 - The end-Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia. Uranium isotopes (δ238U) in CaCO3 sediments deposited under locally well-oxygenated bottom waters can passively track seawater δ238U, which is sensitive to the global areal extent of seafloor anoxia due to preferential reduction of 238U(VI) relative to 235U(VI) in anoxic marine sediments. We measured δ238U in shallow-marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m. We observe a ∼0.7‰ negative excursion in δ238U beginning in the lowermost Jurassic, coeval with the onset of the initial negative δ13C excursion and persisting for the duration of subsequent high δ13C values in the lower-middle Hettangian stage. The δ238U excursion cannot be realistically explained by local mixing of uranium in primary marine carbonate and reduced authigenic uranium. Based on output from a forward model of the uranium cycle, the excursion is consistent with a 40–100-fold increase in the extent of anoxic deposition occurring worldwide. Additionally, relatively constant uranium concentrations point toward increased uranium delivery to the oceans from continental weathering, which is consistent with weathering-induced eutrophication following the rapid increase in pCO2 during emplacement of the Central Atlantic Magmatic Province. The relative timing and duration of the excursion in δ238U implies that anoxia could have delayed biotic recovery well into the Hettangian stage.
AB - The end-Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia. Uranium isotopes (δ238U) in CaCO3 sediments deposited under locally well-oxygenated bottom waters can passively track seawater δ238U, which is sensitive to the global areal extent of seafloor anoxia due to preferential reduction of 238U(VI) relative to 235U(VI) in anoxic marine sediments. We measured δ238U in shallow-marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m. We observe a ∼0.7‰ negative excursion in δ238U beginning in the lowermost Jurassic, coeval with the onset of the initial negative δ13C excursion and persisting for the duration of subsequent high δ13C values in the lower-middle Hettangian stage. The δ238U excursion cannot be realistically explained by local mixing of uranium in primary marine carbonate and reduced authigenic uranium. Based on output from a forward model of the uranium cycle, the excursion is consistent with a 40–100-fold increase in the extent of anoxic deposition occurring worldwide. Additionally, relatively constant uranium concentrations point toward increased uranium delivery to the oceans from continental weathering, which is consistent with weathering-induced eutrophication following the rapid increase in pCO2 during emplacement of the Central Atlantic Magmatic Province. The relative timing and duration of the excursion in δ238U implies that anoxia could have delayed biotic recovery well into the Hettangian stage.
UR - http://www.scopus.com/inward/record.url?scp=85027511929&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027511929&partnerID=8YFLogxK
U2 - 10.1002/2017GC006941
DO - 10.1002/2017GC006941
M3 - Article
AN - SCOPUS:85027511929
SN - 1525-2027
VL - 18
SP - 3093
EP - 3108
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
IS - 8
ER -