TY - GEN
T1 - Urban human mobility data mining
T2 - 4th IEEE International Conference on Big Data, Big Data 2016
AU - Zhao, Kai
AU - Tarkoma, Sasu
AU - Liu, Siyuan
AU - Vo, Huy
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Understanding urban human mobility is crucial for epidemic control, urban planning, traffic forecasting systems and, more recently, various mobile and network applications. Nowadays, a variety of urban human mobility data have been gathered and published. Pervasive GPS data can be collected by mobile phones. A mobile operator can track people's movement in cities based on their cellular network location. This urban human mobility data contains rich knowledge about locations and can help in addressing many urban challenges such as traffic congestion or air pollution problems. In this article, we survey recent literature on urban human mobility from a data mining view: from the data collection and cleaning, to the mobility models and the applications. First, we summarize recent public urban human mobility data sets and how to clean and preprocess such data. Second, we describe recent urban human mobility models and predictors, e.g., the deep learning predictor, for predicting urban human mobility. Third, we describe how to evaluate the models and predictors. We conclude by considering how applications can utilize the mobility models and predictive tools for addressing city challenges.
AB - Understanding urban human mobility is crucial for epidemic control, urban planning, traffic forecasting systems and, more recently, various mobile and network applications. Nowadays, a variety of urban human mobility data have been gathered and published. Pervasive GPS data can be collected by mobile phones. A mobile operator can track people's movement in cities based on their cellular network location. This urban human mobility data contains rich knowledge about locations and can help in addressing many urban challenges such as traffic congestion or air pollution problems. In this article, we survey recent literature on urban human mobility from a data mining view: from the data collection and cleaning, to the mobility models and the applications. First, we summarize recent public urban human mobility data sets and how to clean and preprocess such data. Second, we describe recent urban human mobility models and predictors, e.g., the deep learning predictor, for predicting urban human mobility. Third, we describe how to evaluate the models and predictors. We conclude by considering how applications can utilize the mobility models and predictive tools for addressing city challenges.
UR - http://www.scopus.com/inward/record.url?scp=85015232115&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85015232115&partnerID=8YFLogxK
U2 - 10.1109/BigData.2016.7840811
DO - 10.1109/BigData.2016.7840811
M3 - Conference contribution
AN - SCOPUS:85015232115
T3 - Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016
SP - 1911
EP - 1920
BT - Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016
A2 - Ak, Ronay
A2 - Karypis, George
A2 - Xia, Yinglong
A2 - Hu, Xiaohua Tony
A2 - Yu, Philip S.
A2 - Joshi, James
A2 - Ungar, Lyle
A2 - Liu, Ling
A2 - Sato, Aki-Hiro
A2 - Suzumura, Toyotaro
A2 - Rachuri, Sudarsan
A2 - Govindaraju, Rama
A2 - Xu, Weijia
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 5 December 2016 through 8 December 2016
ER -