Use of a new online calibration platform with applications to inertial sensors

Philipp Clausen, Jan Skaloud, Roberto Molinari, Justin Lee, Stephane Guerrier

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In many fields, going from economics to physics, it is common to deal with measurements that are taken in time. These measurements are often explained by known external factors that describe a large part of their behavior. For example, the evolution of the unemployment rate in time can be explained by the behavior of the gross domestic product (the external factor in this case). However, in many cases the external factors are not enough to explain the entire behavior of the measurements, and it is necessary to use so-called stochastic models (or probabilistic models) that describe how the measurements are dependent on each other through time (i.e., the measurements are explained by the behavior of the previous measurements themselves). The treatment and analysis of the latter kind of behavior is known by various names, such as timeseries analysis or signal processing. In the majority of cases, the goal of this analysis is to estimate the parameters of the underlying models which, in some sense, explain how and to what extent the observations depend on each other through time.

Original languageEnglish (US)
Article number8425378
Pages (from-to)30-36
Number of pages7
JournalIEEE Aerospace and Electronic Systems Magazine
Volume33
Issue number8
DOIs
StatePublished - Aug 2018

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Space and Planetary Science
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Use of a new online calibration platform with applications to inertial sensors'. Together they form a unique fingerprint.

Cite this