TY - JOUR
T1 - Use of an ultrasonic osteotome device in spine surgery
T2 - Experience from the first 128 patients
AU - Hu, Xiaobang
AU - Ohnmeiss, Donna D.
AU - Lieberman, Isador H.
PY - 2013/12
Y1 - 2013/12
N2 - Introduction: The ultrasonic BoneScalpel is a tissue-specific device that allows the surgeon to make precise osteotomies while protecting collateral or adjacent soft tissue structures. The device is comprised of a blunt ultrasonic blade that oscillates at over 22,500 cycles/s with an imperceptible microscopic amplitude. The recurring impacts pulverize the noncompliant crystalline structure resulting in a precise cut. The more compliant adjacent soft tissue is not affected by the ultrasonic oscillation. The purpose of this study is to report the experience and safety of using this ultrasonic osteotome device in a variety of spine surgeries. Methods: Data were retrospectively collected from medical charts and surgical reports for each surgery in which the ultrasonic scalpel was used to perform any type of osteotomy (facetectomy, laminotomy, laminectomy, en bloc resection, Smith Petersen osteotomy, pedicle subtraction osteotomy, etc.). The majority of patients had spinal stenosis, degenerative or adolescent scoliosis, pseudoarthrosis, adjacent segment degeneration, and spondylolisthesis, et al.. Intra-operative complications were also recorded. Results: A total of 128 consecutive patients (73 female, 55 male) beginning with our first case experience were included in this study. The mean age of the patients was 58 years (range 12-85 years). Eighty patients (62.5 %) had previous spine surgery and/or spinal deformity. The ultrasonic scalpel was used at all levels of the spine and the average levels operated on each patient were 5. The mean operation time (skin to skin) was 4.3 h and the mean blood loss was 425.4 ml. In all cases, the ultrasonic scalpel was used to create the needed osteotomies to facilitate the surgical procedure without any percussion on the spinal column or injury to the underlying nerves. There was a noticeable absence of bleeding from the cut end of the bone consistent with the ultrasonic application. There were 11 instances of dural injuries (8.6 %) and two of which were directly associated with the use of ultrasonic device. In no procedure was the use of the ultrasonic scalpel abandoned for use of another instrument due to difficulty in using the device or failure to achieve the desired osteotomy. Conclusions: Overall, the ultrasonic scalpel was safe and performed as desired when used as a bone cutting device to facilitate osteotomies in a variety of spine surgeries. However, caution should be taken to avoid potential thermal injury and dural tear. If used properly, this device may decrease the risk of soft tissue injury associated with the use of high speed burrs and oscillating saws during spine surgery.
AB - Introduction: The ultrasonic BoneScalpel is a tissue-specific device that allows the surgeon to make precise osteotomies while protecting collateral or adjacent soft tissue structures. The device is comprised of a blunt ultrasonic blade that oscillates at over 22,500 cycles/s with an imperceptible microscopic amplitude. The recurring impacts pulverize the noncompliant crystalline structure resulting in a precise cut. The more compliant adjacent soft tissue is not affected by the ultrasonic oscillation. The purpose of this study is to report the experience and safety of using this ultrasonic osteotome device in a variety of spine surgeries. Methods: Data were retrospectively collected from medical charts and surgical reports for each surgery in which the ultrasonic scalpel was used to perform any type of osteotomy (facetectomy, laminotomy, laminectomy, en bloc resection, Smith Petersen osteotomy, pedicle subtraction osteotomy, etc.). The majority of patients had spinal stenosis, degenerative or adolescent scoliosis, pseudoarthrosis, adjacent segment degeneration, and spondylolisthesis, et al.. Intra-operative complications were also recorded. Results: A total of 128 consecutive patients (73 female, 55 male) beginning with our first case experience were included in this study. The mean age of the patients was 58 years (range 12-85 years). Eighty patients (62.5 %) had previous spine surgery and/or spinal deformity. The ultrasonic scalpel was used at all levels of the spine and the average levels operated on each patient were 5. The mean operation time (skin to skin) was 4.3 h and the mean blood loss was 425.4 ml. In all cases, the ultrasonic scalpel was used to create the needed osteotomies to facilitate the surgical procedure without any percussion on the spinal column or injury to the underlying nerves. There was a noticeable absence of bleeding from the cut end of the bone consistent with the ultrasonic application. There were 11 instances of dural injuries (8.6 %) and two of which were directly associated with the use of ultrasonic device. In no procedure was the use of the ultrasonic scalpel abandoned for use of another instrument due to difficulty in using the device or failure to achieve the desired osteotomy. Conclusions: Overall, the ultrasonic scalpel was safe and performed as desired when used as a bone cutting device to facilitate osteotomies in a variety of spine surgeries. However, caution should be taken to avoid potential thermal injury and dural tear. If used properly, this device may decrease the risk of soft tissue injury associated with the use of high speed burrs and oscillating saws during spine surgery.
UR - http://www.scopus.com/inward/record.url?scp=84890546770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84890546770&partnerID=8YFLogxK
U2 - 10.1007/s00586-013-2780-y
DO - 10.1007/s00586-013-2780-y
M3 - Article
C2 - 23584231
AN - SCOPUS:84890546770
SN - 0940-6719
VL - 22
SP - 2845
EP - 2849
JO - European Spine Journal
JF - European Spine Journal
IS - 12
ER -