Use of geodesy to discriminate deformation mechanics in geothermal reservoirs

K. Im, D. Elsworth, Y. G. Guglielmi, G. S. Mattioli

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Surface deformation is commonly observed phenomenon in various geothermal fields and reflects subsurface volume change due to shrinkage or dilation. However, faulting and fault reactivation induced by fluid injection (seismic and aseismic faulting) can also be a significant source of surface deformation. Monitoring subsurface deformation is useful in understanding reservoir behavior such as fluid mass and energy transfer and the evolution of transport characteristics. Moreover, detection of slip may allow a more precise understanding of injection-induced seismicity. We assess surface deformations (vertical displacement, surface tilt and horizontal strain) as signatures in two different modalities: (i) isotropic volume change (Mogi model) and (ii) injection induced shear offset (Okada model) and compare the results with both the resolution of current geodetic tools and existing observations of surface deformation. Comparison of predicted deformations with instrumental resolutions confirms that geodetic signals, especially tilt and strain, are indeed sufficiently large to describe reservoir evolution in detail and comparison to field data suggests probability of significant contribution of slip on surface deformation.

Original languageEnglish (US)
Title of host publication49th US Rock Mechanics / Geomechanics Symposium 2015
PublisherAmerican Rock Mechanics Association (ARMA)
Pages1086-1092
Number of pages7
ISBN (Electronic)9781510810518
StatePublished - 2015
Event49th US Rock Mechanics / Geomechanics Symposium - San Francisco, United States
Duration: Jun 29 2015Jul 1 2015

Publication series

Name49th US Rock Mechanics / Geomechanics Symposium 2015
Volume2

Other

Other49th US Rock Mechanics / Geomechanics Symposium
Country/TerritoryUnited States
CitySan Francisco
Period6/29/157/1/15

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Use of geodesy to discriminate deformation mechanics in geothermal reservoirs'. Together they form a unique fingerprint.

Cite this