User Trust in Recommendation Systems: A comparison of Content-Based, Collaborative and Demographic Filtering

Mengqi Liao, S. Shyam Sundar, Joseph B. Walther

Research output: Chapter in Book/Report/Conference proceedingConference contribution

38 Scopus citations

Abstract

Three of the most common approaches used in recommender systems are content-based filtering (matching users' preferences with products' characteristics), collaborative filtering (matching users with similar preferences), and demographic filtering (catering to users based on demographic characteristics). Do users' intuitions lead them to trust one of these approaches over others, independent of the actual operations of these different systems? Does their faith in one type or another depend on the quality of the recommendation, rather than how the recommendation appears to have been derived? We conducted an empirical study with a prototype of a movie recommender system to find out. A 3 (Ostensible Recommender Type: Content vs. Collaborative vs. Demographic Filtering) x 2 (Recommendation Quality: Good vs. Bad) experiment (N=226) investigated how users evaluate systems and attribute responsibility for the recommendations they receive. We found that users trust systems that use collaborative filtering more, regardless of the system's performance. They think that they themselves are responsible for good recommendations but that the system is responsible for bad recommendations (reflecting a self-serving bias). Theoretical insights, design implications and practical solutions for the cold start problem are discussed.

Original languageEnglish (US)
Title of host publicationCHI 2022 - Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
PublisherAssociation for Computing Machinery
ISBN (Electronic)9781450391573
DOIs
StatePublished - Apr 29 2022
Event2022 CHI Conference on Human Factors in Computing Systems, CHI 2022 - New Orleans, United States
Duration: Apr 30 2022May 5 2022

Publication series

NameConference on Human Factors in Computing Systems - Proceedings

Conference

Conference2022 CHI Conference on Human Factors in Computing Systems, CHI 2022
Country/TerritoryUnited States
CityNew Orleans
Period4/30/225/5/22

All Science Journal Classification (ASJC) codes

  • Software
  • Human-Computer Interaction
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'User Trust in Recommendation Systems: A comparison of Content-Based, Collaborative and Demographic Filtering'. Together they form a unique fingerprint.

Cite this