TY - JOUR
T1 - Using C-DFT to develop an e-ReaxFF force field for acetophenone radical anion
AU - Penrod, Katheryn A.
AU - Burgess, Maximiliano Aldo
AU - Akbarian, Dooman
AU - Dabo, Ismaila
AU - Woodward, W. H.Hunter
AU - Van Duin, Adri C.T.
N1 - Publisher Copyright:
© 2021 Author(s).
PY - 2021/12/7
Y1 - 2021/12/7
N2 - Increased electricity usage over the past several decades has accelerated the need for efficient high-voltage power transmission with reliable insulating materials. Cross-linked polyethylene (XLPE) prepared via dicumyl peroxide (DCP) cross-linking has emerged as the insulator of choice for modern power cables. Although DCP cross-linking generates the desired XLPE product in high yield, other by-products are also produced. One such by-product, acetophenone, is particularly intriguing due to its aromaticity and positive electron affinity. In this work, constrained density functional theory (C-DFT) was utilized to develop an e-ReaxFF force field suitable for describing the acetophenone radical anion. Initial parameters were taken from the 2021 Akbarian e-ReaxFF force field, which was developed to describe XLPE chemistry. Then, C-DFT geometry optimizations were performed wherein an excess electron was constrained to each atom of acetophenone. The resulting C-DFT energy values for the various electronic positions were added to the e-ReaxFF training set. Next, an analogous set of structures was energy-minimized using e-ReaxFF, and equilibrium mixture compositions for the two methods were compared at multiple temperatures. Iterative fitting against C-DFT energy data was performed until satisfactory agreement was achieved. To test force field performance, molecular dynamics simulations were performed in e-ReaxFF and the resulting electronic distributions were qualitatively compared to unconstrained-DFT spin density data. By expanding our e-ReaxFF force field for XLPE, namely, adding the capability to describe acetophenone and its interactions with an excess electron, we move one step closer to a comprehensive molecular understanding of XLPE chemistry in a high-voltage power cable.
AB - Increased electricity usage over the past several decades has accelerated the need for efficient high-voltage power transmission with reliable insulating materials. Cross-linked polyethylene (XLPE) prepared via dicumyl peroxide (DCP) cross-linking has emerged as the insulator of choice for modern power cables. Although DCP cross-linking generates the desired XLPE product in high yield, other by-products are also produced. One such by-product, acetophenone, is particularly intriguing due to its aromaticity and positive electron affinity. In this work, constrained density functional theory (C-DFT) was utilized to develop an e-ReaxFF force field suitable for describing the acetophenone radical anion. Initial parameters were taken from the 2021 Akbarian e-ReaxFF force field, which was developed to describe XLPE chemistry. Then, C-DFT geometry optimizations were performed wherein an excess electron was constrained to each atom of acetophenone. The resulting C-DFT energy values for the various electronic positions were added to the e-ReaxFF training set. Next, an analogous set of structures was energy-minimized using e-ReaxFF, and equilibrium mixture compositions for the two methods were compared at multiple temperatures. Iterative fitting against C-DFT energy data was performed until satisfactory agreement was achieved. To test force field performance, molecular dynamics simulations were performed in e-ReaxFF and the resulting electronic distributions were qualitatively compared to unconstrained-DFT spin density data. By expanding our e-ReaxFF force field for XLPE, namely, adding the capability to describe acetophenone and its interactions with an excess electron, we move one step closer to a comprehensive molecular understanding of XLPE chemistry in a high-voltage power cable.
UR - http://www.scopus.com/inward/record.url?scp=85121038972&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85121038972&partnerID=8YFLogxK
U2 - 10.1063/5.0064705
DO - 10.1063/5.0064705
M3 - Article
C2 - 34879661
AN - SCOPUS:85121038972
SN - 0021-9606
VL - 155
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 21
M1 - 214104
ER -