Abstract
SrMnSb2 is a candidate Dirac semimetal whose electrons near the Y point have the linear dispersion and low mass of a Dirac cone. Here we demonstrate that ultrafast, 800-nm optical pulses can launch coherent phonon oscillations in Sr0.94Mn0.92Sb2, particularly an Ag mode at 4.4 THz. Through first-principles calculations of the electronic and phononic structure of SrMnSb2, we show that high-amplitude oscillations of this mode would displace the atoms in a way that transiently opens and closes a gap at the node of the Dirac cone. The ability to control the nodal gap on a subpicosecond timescale could create opportunities for the design and manipulation of Dirac fermions. \ 2018 American Physical Society.
Original language | English |
---|---|
Journal | Physical Review B |
Volume | 98 |
Issue number | 15 |
DOIs | |
State | Published - 2018 |