Abstract
The polynomial NARX model, where the output is a polynomial function of past inputs and outputs, is a commonly used equation error model for nonlinear systems. While it is linear in the variables, which simplifies its identification, it suffers from two major drawbacks: the number of parameters grows combinatorially with the degree of the nonlinearity, and it is a black box model, which makes it difficult to draw any insights from the identified model. Polynomial decoupling techniques are used to replace the multiple-input single-output polynomial with a decoupled polynomial structure comprising a transformation matrix followed by bank of SISO polynomials, whose outputs are then summed. This approach is demonstrated on two benchmark systems: The Bouc-Wen friction model and the data from the Silverbox model. In both cases, the decoupling results in a substantial reduction in the number of parameters, and allows some insight into the nature of the nonlinearities in the system.
Original language | English (US) |
---|---|
Pages (from-to) | 796-801 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 51 |
Issue number | 15 |
DOIs | |
State | Published - Jan 1 2018 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering