Using stable isotope compositions of animal tissues to infer trophic interactions in Gulf of Mexico lower slope seep communities

Erin L. Becker, Erik E. Cordes, Stephen A. Macko, Raymond W. Lee, Charles R. Fisher

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


We analyzed the tissue carbon, nitrogen, and sulfur stable isotope contents of macrofaunal communities associated with vestimentiferan tubeworms and bathymodiolin mussels from the Gulf of Mexico lower continental slope (970-2800 m). Shrimp in the genus Alvinocaris associated with vestimentiferans from shallow (530 m) and deep (1400-2800 m) sites were used to test the hypothesis that seep animals derive a greater proportion of their nutrition from seeps (i.e. a lower proportion from the surface) at greater depths. To account for spatial variability in the inorganic source pool, we used the differences between the mean tissue δ13C and δ15N of the shrimp in each collection and the mean δ 13C and δ15N values of the vestimentiferans from the same collection, since vestimentiferans are functionally autotrophic and serve as a baseline for environmental isotopic variation. There was a significant negative relationship between this difference and depth for both δ13C and δ15N (p=0.02 and 0.007, respectively), which supports the hypothesis of higher dependence on seep nutrition with depth. The small polychaete worm Protomystides sp. was hypothesized to be a blood parasite of the vestimentiferan Escarpia laminata. There was a highly significant linear relationship between the δ13C values of Protomystides sp. and the E. laminata individuals to which they were attached across all collections (p < 0.001) and within a single collection (p = 0.01), although this relationship was not significant for δ15N and δ34S. We made several other qualitative inferences with respect to the feeding biology of the taxa occurring in these lower slope seeps, some of which have not been described prior to this study. Copyright:

Original languageEnglish (US)
Article numbere74459
JournalPloS one
Issue number12
StatePublished - Dec 6 2013

All Science Journal Classification (ASJC) codes

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General


Dive into the research topics of 'Using stable isotope compositions of animal tissues to infer trophic interactions in Gulf of Mexico lower slope seep communities'. Together they form a unique fingerprint.

Cite this